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A study of electrofishing bias in terms of habitat and
abundance using information-theoretic tools

Kimmo Valtonen, Tommi Mononen, Petri Myllymaki, Henry Tirri, Jaakko Erkinaro, Erkki
Jokikokko, Sakari Kuikka, and Atso Romakkaniemi

Abstract: In electrofishing it is usually assumed that the abundance of fish at a site is strongly dependent on habitat
type. In practice the yearly choices of sites are not perfectly representative of the distribution of habitat types in a river,
so a bias is introduced into density estimates based on the observed densities. However, it is assumed that this bias is
time-invariant, allowing the use of observed densities as relative values. In this work we study whether this is so using a
general information-theoretic methodology in a probabilistic framework. Our methodology allows measuring the similarity
of pre-existing biological knowledge and an empirical model learned from a set of new observations. It also enables a
separate study of habitat sampling bias and habitat—-abundance relationship over a time series. Given a set of restrictions
on the eligibility of sites, as is usually the case in electrofishing, bias-minimal selections of sites to electrofish can also
be provided. In our empirical studies we test our methodology on real-world data sets from two Gulf of Bothnia rivers,
consisting of expert-made habitat site classifications coupled with observational electrofishing data on salmon. Our
approach is general in the sense that there are no restrictions on the nature or construction method of the probabilistic
models used. Furthermore, our methodology compares the models directly, instead of comparing artificial data sets
generated using them.

1. Introduction tion of time-invariance, which might also be questioned. These
Itis a basic assumption in the plannina of electrofishing tha echnical assumptions depend solely on the nature of our data:
P P 9 9 iven more accurate data, e.g. habitat-classification of elec-

g:(earri V\I'gl le\gc?tﬁf?s?]ﬁ] bIiﬁssg]rrtgehgz?gtfsoirs\:ggﬁrﬁlii ;ﬁa?j?frf]ii:u];? rofishing sites instead of larger areas, our models would reflect
P, 9 y ‘nature more accurately.

it is thought that some habitats are too hostile to support any Given these assumptions, we study in this paper the inter-

full epresentaiivences. i1 however assumed hat his alowafl2Y ©f habiat and abundance. We demonsirate a methodol-
P ’ y which allows us to compare existing biological knowl-

bias is time-invariant, enabling the use of observed densities ge to empirical models built from new observations. What

relative values comparable over a time series. is more, our methodology enables us to study habitat sampling
baI;(iecf ;:sitritp?tit())rr:eifslyt;g? &rfrgésuens dggggtg? f'ightha'lf ;Vg;kr'ti?u%ias and the relationship of _habitat and abundar)ce .both sepa-
site depends on the habitat type of that site aByndancave ?étely and tog_ether_. We provide examples of application to var-
mean relative density, i.e. the density of a particular age grouIous types of fls_henes problems: bo_th as a;ool for data analy5|s
o Bnd as a planning aid in the selection of sites to electrofish. In

given a particular habitat, relative to the densities of that age r empirical studies, we apply our methodology to real-world

group in other habitats, during a particular year. The actual ab_ ., tom two Guif of Bothnia salmon rivers, Simo and Tornio
solute densities naturally depend on the absolute size of t '

, ; innish side).
population, which we assume to b_e depende_nt on opher facto S We start by describing in Chapter 2 our modeling approach
(such as the numbers of ascending adults in previous yearﬁq ‘

excluded from this analysis. Chapter 3 we define our methodology formally, proceeding

We furthermore make some assumptions of more technic;g;ShOW examples of its application in Chapter 4 using artifi-

nature. We assume that the habitat classifications are accur lal data. We describe our real-world data sets in Chapter 5,
P . L ) pounding our empirical work on them in Chapter 6. Finally,
and sufficient. In reality this is not exactly true: for example,

we know that the electrofishing sites cover only a tiny por_We discuss the results and outline future work in Chapter 7.

tion (less than 1%) of the habitat-classified areas they are pag Modeli h

of (see Fig. 1). The habitat classifications of the sites stay th&" odeling approac

same over time in our data. This enforces upon us an assump-Given biological knowledge (or a set of hypotheses) and a
set of new data, a natural objective is to study how well the
pre-existing knowledge describes the new observations. One
Kimmo Valtonen, Tommi Mononen, Petri Myllym &ki, and Henry way of tackling th's. problemiis to build a quel desqr]blng the
Tirri. Complex Systems Computation Group (CoSCo), HelsinkiN€W data, proceeding to compare the resulting empirical model
Institute for Information Technology (HIIT), P.O. Box 9800, FIN- t0 the knowledge. To enable comparison, a common language

02015 HUT, Finland. http://cosco.hiit.fi/, and structure for expressing both models is needed.
Firstname.Lastname@hiit.FI In this work we have picked probability theory as such a lan-
Jaakko Erkinaro, Erkki Jokikokko, Sakari Kuikka, and Atso guage, i.e. we assume that both the knowledge and the empiri-
Romakkaniemi. Firstname.Lastname@rktl.fi cal model are probability distributions. Given the assumptions
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Fig. 1. The ratio of electrofishing areas and the habitat-classified areas covering them, average and range across the available time
series. (a) River Tornio. (b) River Simo.
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of Chapter 1, we are thus interested in modelingZ, A), the  their structural complexity. They would work just as well on
joint distribution of habitat and abundance, whéfedenotes more intricate models.

habitat type andd abundance of salmon. From basic laws of Our goalis to find a set of measures on probabilistic models,
probability it follows that this joint distribution can be written enabling the study of the following objectives:

down using two different structures: (1) The amount of habitat sampling bias over a time series.

@) P(H,A)=P(H)P(A | H) Have the yearly site choices been representative of the
@) — P(A)P(H | A) river with respect to habitat type?

(2) Variance of habitat sampling bias over time. Has the bias

When learning an empirical non-causal model from a data set, stayed constant?

both structures are viable. Biological knowledge, however, is
much easier to express using (1), due to causal intuition. Hence,(3) Bias-minimality of the yearly choices of sites in the avail-
we choose it as our structure. able time series. How far have they been from an opti-
We choose this simple model in favour of more complex mally representative set of the same size (given a set of
ones, both to simplify exposition and because we assume that  restrictions on our choices)?
habitat is the dominating factor affecting abundance. More-
over, the main aim of this paper is to study the interplay of ; . X . .
habitat and abundance, expgu?]ding the meri);s ofan infgm){ation- dance given a habitat. Has the relationship of habitat and
theoretic methodology while focusing on habitat selection bias. ~ aPundance stayed the same?

Other factors that abundance might depend on are beyond the(5) an analysis of possible changes in the joint distribution

(4) Variance over time in the conditional distribution of abun-

scope of this work. o . of habitat and abundance over a time series, and recogni-
As an illustrative example of the simplifying assumptions tion of whether the changes are due to a change in habi-
made, the abundance of each age group is modeled separately, 5t sampling or to a change in the relation of habitat and
resulting in a set of models abundance.
M={P(H,Ay),...,P.(H, Ag)}, Obijectives (1) - (3) deal with habitat sampling bias. Objectives

(4) - (5) study whether habitat sampling is the only factor af-
one for each of thé: age groups. Thus, we assume that  fecting the joint distribution of habitat and abundance.
the abundance of age groupdoes not affect the abundances  an important aspect of our approach is that it leaves com-
of other age groups. (We will drop the age group index frompjetely open the way the probabilistic models are constructed.
now on to simplify notation.) We also ignore any dependencieshey can be based on biological knowledge, and/or learned
between abundances of age groups at different points in timgom data, using any preferred methodology. Therefore we can
This means that, for example, the abundance of age 1+ fish g. evaluate how much general biological knowledge, obtained
is assumed to be independent of the abundance of 0+ fish fom other studies, may help in estimation.
the previous year. It must be stressed that whether such depen-| et ys briefly describe the traditional approach to this prob-
dencies are taken into account or not is irrelevant with respeq&m for Comparison purposes_ In several cases, a simulator is
paper deal with probabilistic models in general, regardless Ofrtificial data is generated from it, i.e. a data set of imaginary



observed densities at sites of different habitat types. The real- The definition ofconditional relative entropys
world data is then compared to this artificial data set using the

tools of classical statistics. We will discuss in detail in Chap-

ter 7 the ways our approach differs from the traditional one. D(P(Y | X) || Q(Y | X))

3. Methodology (4) = Y P@) Y Py« log Py | 96)’
TEX yEY Qy | =)

Since our models are probability distributions, we need a
means of measuring their similarity. With this in mind, we first
describe some basic information-theoretic concepts, and then
discuss the particular type of empirical modeling adopted irdefining the divergence of two conditional distributions
this work. P(Y | X)andQ(Y | X), whereY is a random variable with

In the following we assume that our domain is discrete, i.e@lphabey, and@ is a probability mass function. Example 3.2
our variables have either nominal or ordinal values. The habishows how conditional relative entropy enables us to study ob-
tat variable can be seen as an example of a nominal variabli€ctive (4).
there need not exist any order on the set of habitat types. Abun-
dance on the other hand can be viewed as either continuous or
discrete (but ordered). From the management point of view, an

ordered but discrete value set for abundance suffices, sinceét . : .
o xample 3.2.As in Example 3.1, let{ describe the habitat
allows qualitative judgements about the system. type of a site. In addition to having a distributid®( H) over
the habitat types of sites in a river, we also have two conditional
3.1. Measuring the divergence of probabilistic models distributionsP(A | H) andQ(A | H) describing abundance at
For a general introduction to information theory, see [1]. Leta site given its habitat type. To keep things simple, we assume
X be a random variable with alphab&tand probability mass thatA has only two valuesscarceandabundant An example
function P(z), = € X. Therelative entropybetween two dis- 0f P(A | H) andQ(A | H)is shownin Table 1. E.g. according

tributions P(X) andQ(X) is defined as to distributionP(A | H) the probability of there being a lot of
fish when the habitat is gboor type is0.1. Intuitively put,
P(x) Q(A | H) differs from P(A | H) in being more optimistic
@) DPX) QX)) =>_ P(x)log 0@)’ about abundance jpoor habitats.
zeX

where Q(X) is another probability mass function. Relative In order to study the general case, let us first assume that
entropy is also calletullback-Leibler distanc3]. Properly P(A | H) andQ(A | H) always agree with respect (- |
speaking, relative entropy is neither a distance or a measurél = good) as in Table 1. What they do disagree about is the
since it is asymmetric)(P || Q) # D(Q | P) in general) ~abundance of fish ipoor habitats. Let us study the graph of
and does not satisfy the triangle inequality. Hence, we will usélivergence for different degrees of disagreement.

the termdivergencen this presentation.

D(P || @) > 0for all distributionsP andQ, and D(P || If P(H = poor) = 0.5, i.e. both habitat types are equally
Q) =0 if and only if P(X) = Q(X), that is, if the two distri- probable,D(P(A | H) | Q(A | H)) is as shown in Fig. 2(b).
butions are the same. We will use the conventidsg % =
0 for the cases wherP(X) = 0, on the grounds that
lim, gz logx = 0.

In intuitive terms,D(P || @) is a measure of the distance
between two distribution® andq@, i.e. it measures the ineffi-
ciency of assuming that the distributiond@swhen the “true”
distribution isP (hence the asymmetric nature.) You can also
see relative entropy as the expected logarithm of the likelihood It can be seen that the “true” distribution of habitat types
ratio, i.e. the exponent of the expected error in assuming theffects in a natural way the divergence of the conditional dis-
distribution is@, when it in fact isP. Example 3.1 illustrates tributions. If a habitat type is in truth a rare one, any differ-
the suitability of relative entropy as a tool for the study of ob-ences in the modeling of abundance at sites of that type add
jectives (1) - (3). relatively little error. If, on the other hand, a type dominates

a river, model divergence can potentially produce a significant

Example 3.1.Let H describe the habitat type of a site. Let amount of error. Thus, our measure behaves as desired.
us for simpleness of exposition assume that it has only two

values:poor andgood Let P(H) be our “true” model for the

distribution of habitat types in a river. Instead of usiRgH )

we employ distributiorQ(H ), however.D(P(H) || Q(H)),

the relative entropy (divergence) 8 H) andQ(H), is shown Finally, putting together all of the above, tredative entropy
in Fig. 2(a). of a joint distributionof two random variableX” andY has the

Let us compare this to a case whewor habitats are preva-
lent (P(H = poor) = 0.9), and to a case where they are rare
(P(H = poor) = 0.1). The resulting conditional distribution
divergences are shown in Fig. 3.



Fig. 2. (a) Example 3.1. The divergence #f(H) and Q(H). (b) Example 3.2. Divergence d?(A | H) andQ(A | H) when all habitat

types are equally probable.
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Table 1. Two example distribution®?(A | H) andQ(A | H).

P(H = poor) = 0.5

o = N W A oo

Q(A = scarce|H = poor)

P(A|H) QA H)
H=poor H=good| H=poor H=good
A = scarce 0.9 0.3 0.6 0.3
A = abundant 0.1 0.7 0.4 0.7
following decomposition property Our empirical models are thus defined by a set of parameters
D(P(X.Y) | Q(X,Y)) O = (Ohys---:0h,,,,
P(I’,y) eal\hlw'weav |h1s
= P(x,y)log A
p— Q(z,y)
_ Px)P(y | ) 0 0
;P(x,y) log 0000 2 arlhngy s Oar ey )
Pa) Ply | 2) wheredy,; is the probability of a site being of typk; and
5 = P(z,y)log + P(z,y)log ba,n, is the probability of observing abundance categoy
©®) ; @) Qz) <= (z-9) Q(y|x)  at'sites of habitat type;.
P(x) Given a data set, we choose the set of parameter values giv-
= P(z)lo ing the highest probability to the observations. Thesxi-
(2108 G a)

+ZP(x)ZP(y | z) logm

= D(P(X) [| QX)) + D(P(Y | X) | QY | X)).

mum likelihoodparameters® are in the case of our model
class of multinomial distributions normalized frequencies, i.e.

0; = n;/ Zj n;, wheren; is the number of times eventoc-
curs in the data.

Example 3.3.Let H = {hy,h2} and A = {a1, a2}, and our

In intuitive terms, this means that if the true joint distribu- set of observations 1, a1}, [h1, az], [h1, a1], [h2, az]]. Now
tion of X andY is P, but we use&) instead, we can study the our maximum likelihood parameters aflg, = 3/4,6;, =
d!verger?ce by studying the two constituent parts _of the jointy /4, Oariny =2/3,00y0n, = 1/3,00, 10, = 0/1,04,, = 1/1.
distribution separately, allowing us to tackle objective (5).

3.2. Empirical modeling

Concerning empirical modeling in general, it should be kept

in mind that the maximum likelihood parametedscan fail
to generalize. If the models in the chosen model class are too

Since we have chosen to model our variables as discret@ommex, there is a danger of overfitting the model to the par-

the multinomial distribution is a natural choice for a modelticylar set of observations studied. Although we have fixed our
class. In a multinomial distribution a random variabiehas

a set ofrx discrete valuest = {xi,...,z,,}. With the

structure we have chosen this ent&ils= {hq, ...

, hepy +@nd

A ={ay,...,a,,}, whereH is our set of distinct habitat types

and.A is our set of abundance categories.

structure as (1), excessive complexity can still enter through
the choice of possible habitat types and the categorization of
abundance. In the case where we compare the empirical model
to biological knowledge, we can assume that the knowledge
is already encoded in an optimal, generalizing way (assuming



Fig. 3. Example 3.2. Divergence aP(A | H) andQ(A | H). (a) Sites ofpoor type are prevalent. (b) Sites pbor type are rare.

D(P(AH) || Q(AIH) D(P(AIH) || Q(A|H))
P(H = poor) = 0.9 P(H = poor) = 0.1

C = N oW oA oo
o R N w oA oo

08 09 1 P(A = scarce|H = poor) -
Q(A = scarce|H = poor) Q(A = scarce|H = poor)

@ (b)

that the new observations have not been used in the construdata for a particular yeaP?( H) can, for example, be based on
tion of biological knowledge). Choosing the same categorizaprevious studies, be a hypothesis, or be obtained from existing
tions for our empirical model should thus avoid overfitting to data via the river-global distribution of habitat types assigned
the observations. If both models are empirical ones, howevetp the sites.

an overfit-avoiding criterion is needed. The MDL principle [4] We can now study the bias incorporated in the choice of sites
is a possible information-theoretic choice in that case. We wilfor each particular yeay; in the data by means d¥(- || -). By

not go further in that direction in this work, however, becausdooking atD(P,,(H) | P(H)) we can measure the amount
our focus is on comparing knowledge and empirical modelspf error we make by assuming that the sites picked for each
not on the important and complicated issue of empirical modyear are representative of the entire river, i.e. that the distribu-
eling per se. tion of habitats in the set of sites chosen for electrofishing in a

of D(P(X) || Q(X)) is the possibility ofQ(.X) being zero  Example 4.1.Let H be as in Example 3.1. All of a river's 10

for somez € X, causing the divergence to explode to infinity electrofishing sites have been habitat-classified as shown in Ta-
whenP(z) > 0 (If P(X) = 0, we use the convention givenin ple 2(a). Let our biological knowledge B H = poor) = 0.7
Chapter 31) To avoid th|5, the models should be ConstructegndP(H — gOOd) = 0.3, and our data on observed densities
so that they offer nonzero support for all possible events. Iys shown in Table 2(b). We can see that each year more sites
our empirical models in this work, we pretend having observedyre electrofished from, until at yeag electrofishing occurs at
prior to our actual measurements a smatl {) and equal num-  gj| sites. The resulting yearly empirical habitat distributions are

ber of all possible kinds of even{s;, ax]. shown in Table 2(c).
o We can now calculate our bias in the choice of sites for each
4. Application of methodology year usingD(P,,(H) || P(H)). Fig. 4(a) shows that even

Armed with the necessary tools, we will now demonstratethough the number of sites electrofished increases each year,

how to use them to study our objectives. Let our data consist a'€ b|a_:,].|nc.reas.ehs as well up to ygaraccording tca our mea-

a time series of electrofishing data collected at a set of Sites sure. This fits with our intuition, since in yegs goodsites are
Data for yeary; consists of density measurements at a subs §I|ghtly under-represented comparedpimor sites, and going

of sitesS,, (S,, C S). We assume each site has been assigne wardsy, this under-representativeness increases. Atyear
a habitat typeh, € M, where™ is the set of possible habitat e bias is zero, and the empirical model agrees exactly with
types. We also assume we have observations of abundanc®¥ knowledge.

a;; € A, whereA is the set of abundance categories, and We can also study theptimality of yearly selections given
is the observed abundance category at sites of habitatitype a set of restrictions on our choice of sites. As noted earlier,
in yeary;. electrofishing usually has a built-in bias, because some sites
and habitat types are always left unfished. In addition, there is
4.1. Studying habitat sampling bias also a limit on the number of electrofished sites. In our real-
We will now demonstrate a set of procedures for meetingV0rld data the limit lies at 11%. .
objectives (1) - (3), which deal with habitat sampling bias. Our measure allows us to study for each possible number of

Let P(H) denote the distribution of habitat types across all€/éctrofished sites the best possibler,, (H) || P(H)) for a
of the electrofishing sites of a river, regardless of whether the@iVen restriction on our choice of sites. This means that we can
have ever been electrofished from or not, andAgt /) stand ~ 1nd an optimal subset of. € 5, the eligible sites, to elec-
for the observed habitat type distribution of a particular yeafrofish. This is made computationally easy by the convexity of
yi, that is, the distribution of habitat types in the set of sites”(" |l -), enabling us to use a hill-climbing search algorithm.
that were electrofished during yegt and year; only. P(H)  Note that there aré/,
represents our biological knowledge about the habitat distribu- 1S,
tion of ariver, andP,, (H) is an empirical model built fromthe (6) N = (|S |),



Table 2. Example 4.1. (a) The types of the sites. (b) The time series of observed densities. (c) Yearly empirical habitat type
distributions.

Year S1 S2 S3 S4 S5 S6 S7 S8 S9 $10

Age class 0 6.2 1.0 1.6
5 V7] Y1 Ageclass 1 32 03 0.9

Age class 2 15 0 0.2
s1 | poor AgeclassO[ 1.1 35 04 3.0 09
s2 | good Y2 Ageclass1| 03 18 01 21 04 H=poor H=good
3| poor Ageclass2[ 01 07 0 1.1 0.1 P,, | 0.67 0.33
s4 | good AgeclassO| 13 4.2 0.4 0.9 06 0.9 11 | p, |06 0.4
S5 | POOT |y, | Ageclass1| 0.2 1.6 0.1 0.4 03 04 09 | p, | 086 0.14
s | POor Ageclass2| 0 05 0 0.1 0 01 02 | p, |o0s8 0.12
v pgg; Age class 0| 1.7 05 08 09 07 14 33 1p | P, |07 0.3
58 good ys | Ageclass1| 0.4 0 06 08 02 06 23 12
SZ’O D00 Age class 2| 0.1 0 02 01 03 02 02 0. ©

AgeclassO[ 1.6 40 03 37 10 05 05 09 30 15

@ ys | Ageclass1|/ 04 1.2 0 14 07 04 03 06 25 1p
Ageclass2|/ 0.1 06 O 02 02 01 01 02 05 o0p

(b)

possible ways of picking site samples of the same size as thaentail is that the knowledg®(H ) would differ from one year
of yeary;, so a brute-force search is impracticable for quiteto another.
small sample sizes already. For example, let us assume a river

has 50 habitat-classified areas. Let us say we wish to pick 20%2. Studying the interplay of habitat and abundance
of the sites for electrofishing. If we assume that 10 of the sites |, Chapter 2 we defined our model for the joint distribution

will never be chosen/§.| = 40 and|S,,,| = 10), from (6) we 4t ap ndance and habitat &H, A) = P(H)P(A | H). To

. ) . > ﬁ%pect the interplay of habitat and abundance in a new set of
though 50 is quite a small number of sites. By comparisonyservations, we stud9(Py, .., (H, A) || P(H, A)), where
river Tornio has 565 sites. P(H,A) is our biological knowledge, expressed as the joint
Example 4.2.Let the observed data be as in Example 4.1. Wedistribution of habitat and abundance, aRg ... .. (H, A) is

wish to see whether we could have made a more representadr cumulative empirical model, i.e. the empirical joint distri-
tive choice of sites in yeang, v», y3 andy,. (Note that in this  bution at yeau;, based on the data up to and including ygar
case all sites are eligible, i.6, = S.) Going over all possi- describing a new data set.

ble sample sizes, we can calculate a way of picking sites that Using (5), the joint distribution divergence can be decom-
minimizes our bias for each size. See Table 3 for one particposed as follows:

ular series of optimal choices and Fig. 4(b) for a comparison
against the choices made in Example 4.1. We can see now that D(Py,....s(H, A) || P(H, 4)) =

even though our bias was non-zero at ygarandy,, we could  (7) D(Py, ...y (H) || P(H))

not have done any better with samples of those sizes. +D(Py, ... (Al H)| P(A| H)).

Our measure can thus be used as a planning aid: given st js, the cost of assuming that our pre-existing knowledge
subset of sites/habitat types to choose from and a selectlop(H A) describes well the new observations up to ygaran
percentage, our methodology can offer a set of bias-minimahe seen as the sum of two costs: the cost of assuming our habi-
selections pf sites. A person planning to electrofish in a rivegy; sampling has been representative and the cost of assuming
can also pick a set of sites freely, and see how far from they,; knowledge and the data agree on the relationship of habi-
optimum her selection lies. L » tat and abundance. If the divergence of our joint distributions

Naturally, the concept of bias-minimality is conditional on changes at some point in time, we can see whether this is due to
the particular habitat assignment, biological knowledge ang, change in the choice of habitat types chosen for electrofish-

empirical model adopted, but note how we only require thajyg 1o a change in the relationship of habitat and abundance in
the type assignment defines a probabilistic sample space a data, or to a change in both.

the models are probability mass functions.

Our tool can also be used to study different habitat hypotheExample 4.3.Let H be the habitat type variable of Exam-
ses about a river: it allows one to see whether site samplingle 3.1. We have electrofishing data for a time series of 5 years
has been representative of the hypothesis under consideratidiem the electrofishing sites of Example 4.1. Our biological
Finally, dropping the time-invariance of the types assigned td&nowledge about the sites’ habitat%,7), is as in Example 4.1,
sites would require no modification to the measure; all it wouldand the habitat assignments of sites are also the same (see



Fig. 4. (a) Example 4.1. Time-variance of habitat sampling bias compared to percentage of sites sampled. (b) Example 4.2. Best-case
bias vs. actual choices

D(Py, (H) || P(H)) D(Py, (H) || P(H))
0.25 T T T T T 0.5 T T T T T
% of total number of sampling sites —o— best possible choice —&—
D(Py;(H) || P(H)) —— 0.45 = example choice  + ]
02 - — 100% 04 | _
0.35 -
0.15 - - 5% 03 -
% of total number of .
sampling sites 0.25 = 7
0.1 — 50% 02 —
0.15 - m 1
+
0.05 - 25% 0.1 | Y3 1
n
0.05 Y2 -
Y1 M Y5
0 1 1 1 0 1 b é
Y1 Y2 Y3 Ya Ys 0 20 40 60 80 100
Year % of total number of sampling sites

@ (b)

Table 3. A set of possible bias-minimal ways of choosing a given number of sites with the habitat types of Example 4.2. “*" signifies
inclusion.

% of total number of site§ s1 sz s3 s4 S5 S¢ ST Ss  S9 S0
10 *

20 oo

30 * * *

40 * * * *

50 * * * * *

60 * * * * * *

70 * * * * * * *

80 * * * * * * * *

90 * * * * * * * * *
100 * * * * * * * * * *

Table 2(a)). We have a different series of observations, howdata for age 1+ fish exhibit a steady habitat—-abundance rela-
ever. Table 4(a) shows the yearly statistics of habitat observaionship, which however disagrees with our pre-existing bio-
tions. From the table we can calculate e.g. tRat. ., (H = logical knowledge. And finally, the abundance of 2+ fish in the
good) = 0.6875. data (given a habitat type) seems to diverge clearly from our
The observations of abundances given a habitat are shovkmowledge beginning with yeay,, regardless of the increased
in Table 4(b), from which we can calculate e.g. that for agehabitat sampling bias.
class 0,P,, .. ,,(A = scarce | H = good) = 0.25. P(A | . : : .
H), our p?e-e;(/isting knowledge about the distribution of abun-. W_h%n_ In:ﬁrrt)rter;ung thg_t_r esulltzz ?r_lblr?p;rtant thj'f;g tg keep
dance given a habitat, is shown in Table 4(c). 'r? m'ﬂ ISH atthe c<t)n itional dis r('j u 'Ofyl,.-.P.,y,,( | H)
We can now calculat® (P, . ,,(H,A) || P(H,A)) as de- has|A| - [}| parameters, compared (| for Py, ..., (H),

scribed above, shown in Fig. 5(a) for all age classes . The dé:€- (Nere are more parameters to be estimated from the same
composition taD(P,, .,.(H) || P(H)) andD(P,, .. ,.(A | amount of data. Accordingly, if habitat sampling seems to sta-

H) || P(A | H)) is shown in figures Fig. 5(b) and Fig. 5(c). bilize, but the relationship of habitat and abundance still fluc-

Studying Fig. 5 we see that age 2+ data seem to diverg'é‘ates’ this might be due to several reasons, if we only have a

rom our pr- xising biologicl knawiege the most, and nong LT S92 o 4, LTI v overesofsame .
of the data converge to our knowledge. Turning now to con- y 9 '

stituent parts, the figure indicates that habitat sampling bia, ttype system might classify sites non-optimally with respect

has increased from yeas onwards. Going back to the data, 0 abu_ndance (i.e. some habitat types in our system might dif-

we see that this is because sites of good type have been ovdgrentiate levels of abundance poorly). These two cases can be

represented from then on. Looking at the habitat—abundan udied by Chaf‘g'”g either the mode_l structure or the type sys-

relationship divergence we see that age 0+ data actually co ;nt.;owever, in the case of a short time series, it could also be
Y1

close to our knowledge from yea, onwards, whereas the v (A | H) is complex enough to require more data

,,,,



Table 4. Example 4.3. (a) Numbers of observed habitats per type for each year. (b) Observed abundances given habitat for each year.
Pre-existing biological knowledge about the relationship of habitat and abundance, assumed to be equal for all age classes.

Year H=poor H=good
Age class 0| scarce abundan
Y1 Age class 1| scarce abundan
Age class 2| scarce abundan
Age class 0| scarce abundan
H=poor H =good Y2 Age class 1| scarce abundan
v | 2 3 Age class 2| scarce abundan P(A| H)
y2 | 1 2 Age class 0| scarce abundan H=poor H=good
ys | 1 3 ys Age class 1| scarce abundan A = scarce 0.9 0.25
ya | 1 3 Age class 2| abundant scarce A = abundant| 0.1 0.75
ys | 1 3 Age class 0| abundant scarce
Ya Age class 1| scarce abundan (©
() Age class 2| abundant scarce
Age class 0| scarce abundan
Ys Age class 1| scarce abundan
Age class 2| abundant scarce

(b)

to capture the shape of the distribution well enough. Nonethesur data set. Our measure thus shows the momentary changes
less, this is a problem common to all methods of comparingn the empirical distribution over a time series. (In other words,
models constructed from real-world data to a given model, sthe series of divergences describe the learning process in a field

we lose nothing by adopting our methodology. study.)

) ] ) Example 4.4.Let H be the habitat type variable of Exam-
4.3. Studying the interplay of habitat and abundance ple 3.1 once more. We have the same set of observations as in
without pre-existing biological knowledge Example 4.3, shown in tables Table 4(a) and Table 4(b). This

In practical modeling, the pre-existing biological knowledgetime we lack the biological knowledge(H, A), however.
might well be lacking, or we might intentionally want to in-  We can now calculat® (P, . ,.(H,A) || Py,... 4. . (H, A))
corporate biological knowledge only in the habitat classifica-shown in Fig. 6(a) for all age classes.
tion phase, preferring to let the data decide on the habitat— The decomposition td(Py,, . 4. (H) || Py,..y. . (H))
abundance relationship. In this case, we haveél, A) to  andD(P,, . ,. (A | H) || Py,...4,_.(A | H)) is shown in
compare the empirical model to. figures Fig. 6(b) and Fig. 6(c).

To overcome this, we adopt the following technique. Ateach The graphs show that our habitat sampling process fluctuates
time stepy; we take the empirical model based on data col-slightly at first, converging after yeas. Overall, habitat sam-
lected so far to be the accumulated biological knowledge apling has a negligible effect on joint distribution divergence.
that moment in time. We then measure the distance to the col-ooking at the habitat—-abundance relationship, we see how 0+
responding empirical model at the previous moment in time. data have a quirk at yeag, apparently returning to conver-

Formally put, we study gence atys. By comparison, 2+ data, which have a consistent

change fromys on, have converged the least by, whereas
D(Pyy,...ys(H, A) || Pys,...pims (H, A)). 1+ data, which stay the same across the time series, converge

This procedure measures the convergence of our empirical maaeidly.

as time unwinds, successive models should come close to eachThe technique we exhibited above is only one possible way
Other, if OurjOint distribution is time-invariant. Natura”y, in the of tack“ng the prob'em of having no pre-existing bio'ogica|
case of convergence it does not follow that &yr, .., (H, A)  knowledge. When interpreting the results, it is helpful to keep
would now be a “true” distribution. It only indicates that our jn mind thatP,, ., always has the same dataig. . ,,
habitat sampling bias has stayed constant and the relationshided with the data of one year. Hence, as time goes on, the
of habitat and abundance has stabilized. Note that this way ¢fotential for difference gets smaller, depending somewhat on
measuring reflects reality in several fisheries problems: we afe method of learning the empirical models from the data. The
observers are always located at a pgjptin time, having at  apsolute divergences at different points in time can thus not be
our disposal the data collected up to that point, wanting tqised as absolute, directly comparable measures of change in

predict for yeary;,,. The divergenceD(Py,,...,,(H,A) |  the distribution. As time goes on, successive divergences come
Py,....yi-1 (H, A)) measures in a sense the amount of infor-increasingly comparable, however.

mation about the joint distribution that we would have gained one way of avoiding this characteristic would be to use
at yeary;,1, had we added the measurement of that year O(Py, ypirs r (HA) || P H, A)). Inthis case

,,,,,

—T+1a~-:yi(



Fig. 5. Example 4.3. (a) Variance db(P,,,....y,(H, A) || P(H, A)) over time for each age class. (b) Variance of habitat sampling bias
over time. (c) Variance of abundance—habitat relationship for each age class.
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1.2 T T T T T
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we assume that a time seriesiof/ears suffices to capture the 5. Real-world data sets
empirical distribution. We then compare the empirical distri- - . .
Let us now exhibit the nature of our data sets in some detail.

bution of the lasfl” years to thel” years in time that preceded : N
it. These two subs><lats of data a?e non-overlapping and of thi/é use habitat and electrofishing data from two Gulf of Both-
: a salmon rivers, Simo and Tornio (the Finnish side). In this

same size. Most importantly, any measurements made usirwork only dat id sal included
this measure at different time poingsandy; are comparable y data on wild saimon are Included.
as absolute values. Naturally, this type of a measure can onl .
capture completely changes occurring within a time frame og-l- Habitat data
2T years. This can be remedied by pickifig= | 5] at each Table 5 shows our set of habitat variables. The variables are
instant of timey;. If this is done, different points in time are not naturally grouped in the sense that e.g. all variables iBthte
exactly comparable, but the subsets of data compared at eatshm column are percentages which sum up to 100% for each
point in time are. In this work we will not study these tech- particular site. To demonstrate the two-layered structure more
niques any further, however, because they require a time serigtearly, Table 6 shows a hypothetical set of habitat data for
of such length thal’ can reasonably be expected to suffice forvariable group£urrentandDepth
learning the empirical joint distribution model. Our real-world  In the following analysis, a variable set name sucbapth
data only has time series of lengths 15 and 17, making thesghould be understood as the variable §8epth: < 20 cm
techniques inapplicable. Depth: 20 - 50 cmDepth: 50 - 100 cmDepth: > 100 cnj-.

Fig. 7 shows how the classification accuracy of electrofishing



Fig. 6. Example 4.4. (a) Momentary changes in the empirical joint distribution for each age class. (b) Momentary changes in habitat
sampling bias. (c) Momentary changes in abundance—habitat relationship for each age class.
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sites differs significantly for the rivers: the data for Simo have 1. The low level, where each record describes a single in-
a much coarser resolution. dividual fish caught by electrofishing.

2. The intermediate level, where each record describes a
5.2. Electrofishing data single fishing run. That s, as electrofishing is carried out

In our data the electrofishing sites are subareas of the areas 1N 1 - 3 separate runs, we have a record for each of the
described by the habitat data. For each year in our time series  individual runs at a specific site.
we have electrofishing data from a subset of the total set of 3 The high level, where each record summarizes the elec-
sites. The sampled sites and their number vary over time, es- trofishing data for an entire river for a single year. This

pecially in the beginning of our time series. See Fig. 8 for the data is irrelevant to this work, since individual sites (and
yearly locations of electrofishing sites (to the accuracy of the thus their types) cannot be told apart.

location of the covering habitat area).

Each sampling site has been habitat-classified by domain ex- The lowest level is not directly useful for the main problem
perts as described in Chapter 5.1. This classification is “timebere, since we are not interested in modeling a single fish. On
less”, since these classifications are assumed to stay the sath€ other hand, this type of data contains exact measurements
during all of our available time series. such as length and weight instead of estimates. It also con-

The data sets contain electrofishing data on three levels: tains a relatively large number of samples (many thousands).
An important observation is that this data is highly valuable



Table 5. An overview of the habitat variables in the data set. Each column consists of an interconnected group of variables.

Variable groups

Bottom Current Depth

Bottom: Sand/mud/clay Current: Stillwater pool Depth:< 20 cm
Bottom: Gravel,< 2 cm Current: Pool, visible currenf Depth: 20 - 50 cm
Bottom: Stones, 2 - 10 cm | Current: Riffle Depth: 50 - 100 cm
Bottom: Stones, 10 - 30 cn] Current: Rapid Depth:> 100 cm
Bottom: Boulders> 30 cm | Current: Strong rapid

Bottom: Bedrock

Table 6. An example of habitat data, grou@urrent and Depthonly. Each row is a record of data describing a site, with the values
within a variable group summing up to 100.

Current Depth
Stillwater pool  Pool, visible current  Riffle  Rapid Strong ragidc 20cm 20-50cm 50 - 100 cm > 100 cm
0 20 30 50 0 0 0 100 0
25 50 25 0 0 0 0 40 60
65 30 5 0 0 0 60 30 10
100 0 0 0 0 90 10 0 0

in the sense that it can be used to classify fish based on thderent ages but similar sizes (and thus presumably at the same

length. stage of maturity) more comparable. Weight could in princi-
At the intermediate level, a slight complication enters. Dur-ple used as an alternative indicator of size as well, but the data

ing electrofishing, usually more than one fishing run is perwas often missing, whereas length never was, so we chose to

formed. However, the overall number of such runs, performeeémploy length only.

consecutively at the same site on the same day, varies. The

most common number of runs is three, but sometimes therg 3. categorization of the data

are fewer runs. Thus, we chose to always use the first run only, We will now describe the way we chose to categorize the

to have comparable data for all sites, rivers and years. ._available real-world data in our empirical modeling.
In fact, the data at the intermediate level are just a summing

up of the lowest-level data, augmented by data on fishing runs .
that caught no fish. Therefore we created our own version of-3-1. Habitat type systems
intermediate (fishing run) level data directly from the low-level ~Recall from Chapter 5.1 that in our real-world data the elec-
data, adding to the result the unsuccessful fishing runs to avoigiofishing sites are described by a set of habitat variabiles
positive bias. Our methodology requires a type system. i.e. a disjoint and ex-
As the aim is to model the abundance of each age groupaustive partitioning of the space of all possible data vectors
separately, we need an age-classification system for our empifduced byV". In other words, we need a discrete classification
ical models. Ready-made ages are provided in the data, but féf our set of sites.
part of the data the information is missing. Hence, we chose A biologist or a fishery scientist might well want to define
to classify the fish according to their length, using 7 and 11the type system on the basis of biological knowledge. In our
cm as the split points. This provided us with a significantlyempirical work here, we had no such given system available,
higher amount of data, so we deemed it worthwhile. It also reand thus devised as unbiased a system as possible. This is not
moved any bias that the ready-made age-classification miglé feature of our methodology, however: any disjoint and ex-
introduce to the system. These particular split points were déaustive partitioning of the habitat data space will do. Our aim
termined by domain experts. To see how they correspond to tHeere was to find one which did not add any unwelcome bias to
empirical length distributions of age-classified fish in our datathe system from the beginning. It should serve as a crude point
sets, see Fig. 9. Note that the plot for river Tornio also show®f comparison. Remember also that from the modeling accu-
how under-represented 0+ fish are in the aged subset of daltacy point of view, the essential thing here would be to habitat-
for river Tornio, due to missing age labels for small fish. classify the electrofishing sites themselves, due to their being
Naturally, this length-class system does not correspond exsuch atiny portion of the currently habitat-classified areas (see
actly to an age-class system: fish of the same length might haVég. 1). Our current classification is probably quite inaccurate
different ages, as Fig. 9 shows. Also, it is known that salmorio start with.
grow faster and smoltify earlier in warmer environments, so a Recall from Chapter 5.1 that our habitat data actually con-
more southern river can have younger fish at a given lengttgists of two layers. Our set of variables is a setofariable
But this is actually one of the advantages of our system: if wesets,V = {V1,...,V,,}, where eaclV; is a set ofn; variables
assume that maturity depends on size (which depends on agé)ji1 - - -, Vin, }- The values of the members &f sum up to
itis reasonable to classify fish based on size, making fish of difL00 in each record (see Table 6).



Fig. 7. Habitat data accuracy. Each point denotes at least one occurrence of that particular value in the data. (a) River Tornio. (b) Rive
Simo.

River Tornio, habitat data accuracy for continuous variables River Simo, habitat data accuracy for continuous variables
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As an example of an uninformed type system, we chose to Even though we have not used any biological knowledge in
employ equal-width discretization of our continuous habitatthe determination of the subregions of the simplex, the ones
variables tok;, bins, independently of each other and the datadefined by our type system clearly ought to catch some of the
That is, if K, is 3, values in the rang@..33] get assigned to characteristics of habitat, keeping in mind the semantics of our
value0, values in the rangé33..67] to valuel, and values in  habitat variables: the variables within each group are more or
the rangg67..100] to value2 for each variable;;. less ordered (going from shallow to deep water in the case of

Let us call H; the random variable devised in this manner, Depthfor example).
consisting of a group of variables summing up to 100 and

denoting a particular aspect of the habitat type of a site, .65 3.2. Obtaining abundances from density observations
depth.H; is a vector-valued random variable taking as its val- ¢ yeary; we have electrofishing data frofiy,, a set of elec-
(2 i

l{JgSlOUI’ d}?cfi'fﬁ,ﬂ Céaésczzgzt';?ﬁé'r':' S?rirﬂ#fo?ggﬂ;in trofishing sites. Each site € S,, has been assigne(_j a habitgt
ey Bk ' . quireme gtype h;. To describe the absolute observed densities at sites
up to a constant, the possible valueshilie within a|Vi| —1- 4 type h; during a year we use the average of the measurec
dimensional simplex in thg/;|-dimensional space induced by 5qte densities for sites of type. We might lose some in-

V;. Our discretization divides the simplex infs,,'""| ' re-  formation here, but we justify this by our assumptions: we do
gions of equal size. The following example illustrates this.  assume that density is strongly dependent on habitat type. |

Example 5.1.Let us assum& = {V;,Vz}. V; = {Depth: < this basic assumption holds, th_e average should be a goo_d e
50 cm, Depth: 50 - 100 cm, Depth:100 cni, V, = {Current: ~ timate. We now have;;, an estimate of the absolute density
pool, Current: riffle, Current: rapjd Eachv;; € V; isacontin- ~ atyeary; given habitat type, for each habitat typg. In order
uous variable with rang..100], and" v;; = 100 in each to translate these into abundances, we equal-width discretiz
record. Table 7(a) shows the classifications of three sites by ext€ range ofi;; to K, bins. We then learn the empirical model
perts using/. We choosek’, = 2. Our type system produces from the data set consisting of these discretized values.
the classifications shown in Table 7(b). Remark5.2 A more sophisticated abundance model could be
Now, asH is vector-valued ¥ = [H,, H,]), we see that introduced as well, adding compone®t the observed densi-
Hj; does not differentiate any of the three sites. Due to differties, making our modeP(H)P(O|H)P(A|O, H). This would
ences in the values dff;, however,s; ands; get mapped to rid us of the average-taking process, but introduce the condi-
a different habitat type (since their discretized versions differ)tional distribution P(A|O, H), the probability of abundance
whereass; and s, are considered to be of the same habitatof a given age class given the observations of densities at
type, since they both have discretized val0g), 0] for H;,  number of sites of the same habitat type. Without quite strong
even though their original classifications differ somewhat.  extra assumptions, this distribution cannot be learned from the
Fig. 10 shows the situation in visual terms. data, however, (the data only has the observed densities, no

Our goal, a single habitat type variable, is thus a vector-the abundance) so we have not adopted this strategy here.

valued variable with value set Example 5.3.Let H be the habitat type variable of Exam-
m ple 3.1. We have electrofishing data for a time series of 5 years
[y, Ho] €{0,1,..., Kp — 137, from the electrofishing sites of Example 4.1. Our biological
wherem = 37, |Vi]. knowledge about the sites’ habitaf¥,H ), is as in Example 4.1,



Fig. 8. The yearly locations of electrofished sites. (a) River Tornio. (b) River Simo.
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Fig. 9. The empirical length distributions of fish, aged in the data. (a) River Tornio. (b) River Simo.
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and the habitat assignments of sites are also the same (see B#logical knowledge, we used the techniques shown in Chap-
ble 2(a)). The observed densities are shown in Table 8(a). ter 4.3 to study the cumulative learning process of the joint
We now calculate the average observed densities per habitdistribution from observations. For the analysis of habitat sam-
type for each year, proceeding to transform these to discretizgaling bias, we chose the global distribution of habitats in the
relative densities per year. We chodkge = 2 to match the river as our biological knowledgB(H).
two-valued abundance variabk of previous examples, ob- Our empirical models were built as described in Chapter 3.2.
taining time series data on abundances given a habitat typ&/e categorized the data using the methods of Chapter 5.3,
shown in Table 8(b). picking K, = 3 and K, = 3, i.e. three categories for abun-
dance and each habitat variable. We aimed at as small a numbe
of categories as possible, to avoid overfitting to our relatively

. . - . ) small amount of data, while still allowing for meaningful qual-
We will now describe empirical results obtained using real-j5tive analysis.

world data from two Gulf of Bothnia salmon rivers: Simo and |y aqdition to measuring the optimality of yearly choices,
Tornio (the Finnish side). The techniques of comparing émye compared against several different restrictions (in the order
pirical models to biological knowledge have been desc”be%fincreasing restrictiveness):

in Chapter 3 and illustrated in Chapter 4. Since we did not
have available a joint distribution mod&(H, A) describing

6. Empirical results

1. No restrictions on selection (except the number of sites).



Table 7. Example 5.1. (a) Three sites classified by experts with respekt th) H using K, = 2, i.e. V discretized using 2 bins.

Vv
Site Vi Va
Depth:<50cm  Depth: 50 - 100 cm _ Depths 100cm | Current: pool  Current: rifle  Current. rapifl
Si 20 35 45 20 80 0
5; 5 65 30 15 75 0
Sk 40 45 15 10 85 5
@
H
Site H, Ho
Depth:< 50 cm  Depth: 50 - 100 cm _ Depth: 100cm | Current: pool  Current: rifle  Current. rapigl
S 0 0 0 0 1 0
Sj 0 1 0 0 1 0
Sk 0 0 0 0 1 0

(b)

2. Sites with a non-zero percentageQ@irrent: stillwater  lie quite far from the non-pool restriction, however, so either
pool are not eligible. This is an example of a real-world sampling has been quite non-optimal or, what is more likely,
restriction. there exists a constant stricter restriction constraining sampling.

. . , . Studying the convergence of the empirical distribution of

3. Sites which have never been electrofished from duringyjecirofished habitat types in Fig. 11(d), it seems like habitat

the entire time series are excluded. This is the maximagampling has converged to a constant bias fairly well, except-
constant restriction imposable on the data. ing 1994 and 1997.

If a constant restriction on the choice of sites actually exists for |he convergence of the empirical joint distribution is shown
a river, we would expect it to lie somewhere between restricin Fig. 12. The difference of 2+ fish from the other age classes
tions 2 and 3. is quite clear. The 0+ fish have a noticeable change in 1994, but

by the end of the time series their distribution has converged

. . I . the most. The 1+ fish had a change in 1996 and seem to have

6.1. River Tornio, mesh S'de, i L i been experiencing some change from 1998 onwards. Finally,
There are 565 habitat-classified sites in river Tornio. Ouryfier changing in 1993, 2+ fish seem to have had a temporary

electrofishing data contains measurements from a period of 1&5pe period up to 1997, when another change enters.
years. Fig. 11(a) shows the habitat representativeness of each ’

yearly selection of electrofished sites on the Finnish side og 2 River Simo
river Tornio. You can see that for river Tornio the representa-""_’ . e o .
tiveness has increased over time, although not essentially since-r_he.re are 377 hablﬁat-cIaSS|f|ed sites in river Simo. Our elec-
1994. Up to that year the increase in representativeness al§@fishing data contains measurements from 17 years (due to
correlates positively with the number of sampling sites, but af}100ding, no measurements were possible in 1992). Fig. 13(a)

ter that the slight increase in the number of sampling sites do ows the habi.tat rgprgsentativeness of each yearly selectio_n of
not really affect the representativeness any more. Measurin ectrofished sites in Simo. You can see that the representative-

the different aspects of habitat separately we see as shown fl§SS has notreally changed over time, regardless of the fluctu-
Fig. 11(b) thatCurrenthas a trend towards higher representa-2tion in the sampling percentage, which in 1994-1997 doubled

tiveness up to 1991, but after that representativeness actuaflfP™ that in 1983. The drop in percentage from the previous
seems to have a slightly decreasing tendeBoytomdisplays ~ Year in 1998 by almost a half affected representativeness only
quite smooth and slow convergence to a steady iesth slightly. This is most likely the outcome of the coarse reso-
seems to fluctuate the most in the beginning, never displayinfftion of the original habitat classifications of river Simo (see
much of a trend. ig. 7): the type system is too crude, failing to differentiate the

Fig. 11(c) shows the best-case representativeness for all po%j:[es suffi(;iently. . . .
sible yearly site sample sizes, compared to the actual choic Measuring the different aspects of habitat separately as in

committed in the data. It can be seen that if there were no re-'9- 13(b) we see that the representativeness with respect to
strictions, something like 25% of sites would have to be elecdranularity of bottom seems to have decreased from 1983 until

trofished to have very good representativeness, but somethid@90: &fter which all factors seem to have reached constant
like 10%, which is already a percentage occurring in the data?'@S- Different current types also seem to have had varying

suffices for good representativeness. The actual choices maa%oresgntativeness up to 1990.’ wher‘éasth.has_ had a con-
stant bias all along. An interesting observation is that when the



Fig. 10. H; of Example 5.1. The original values &f, lie on the plane whose outlines are shown in bold. The triangular subregions of
this plane are labeled with the corresponding valueof
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number of sites sampled dropped sharply in 1998, the repraron-explicit restrictions on the eligibility of sites. The empiri-

sentativeness of bottom granularity and current type actuallgal habitat-abundance relationships in these rivers were seen to

increased slightly. be still in the process of changing periodically. The shortness
Fig. 13(c) shows the minimal bias for all possible yearly of the available time series might be a factor here, however.

site sample sizes compared to the actual selections made inAs described in Chapter 2, the traditional way of studying

the data. Something like 5% would already suffice for goodbias is via a simulator mimicking nature. This simulator can

habitat sampling, well in the range of actual choices. As withbe seen in our approach as a case where the simulator defines

river Tornio, the choices made over the time series are quite faP(H, A). We can then stud(P,,... ., (H, A)) || P(H, A))

from the non-pool restriction, hinting at a constant restrictionas explained in this work. The simulator approach is thus sim-

close to the “selected at least once” restriction. ply a situation where the “true” joint distribution is known and
Studying the convergence of the empirical distribution ofencoded in the guise of a simulator.

electrofished habitat types in Fig. 13(d), we see that habitat A most important difference is that in our approach no arti-

sampling seems to have stabilized fully by 1990. ficial data set is needed, because our measure works on models
Empirical joint distribution convergence is shown in Fig. 14. directly. It studies differences idistributions not differences

It seems like the habitat-abundance relationship had temporain data sets. After allP(#, A) is all the information the sim-

ily stabilized by 1991, but 1992 has no measurements and whenator approach contains: the artificial data generated from the

we come to 1993, something has changed in the relationshigimulator reflectP(H, A) in the limit of unrealistic data set

The 0+ fish seem to stabilize from 1996 on, but it seems likesizes (real-world data have less than 20 years of data).

in 2000 things are changing again. For 1+ fish 1994 and 1998 Our methodology only requires that the variables define a

are notable, and 2000 shows a remarkable change. The 2+ fighobabilistic sample space, and the models be probabilistic mass

stabilize in 1994, but have an abrupt change in 1995, and agaftinctions. Even though we chose to categorize our variables

in 1999. in this work, the methodology can be defined analogously for
continuous variables.
7. Conclusions and future work Many of the implementations of our approach in this work

could be refined and/or extended. The basic structural assump-
We have studied the problem of measuring electrofishingion could be made more complex. The empirical models could
bias and the interplay of habitat and abundance by means &k constructed in different ways: criteria such as the MDL prin-
an information-theoretic methodology put forth in Chapter 3.ciple, or a predictive score, could be tried out instead of our
We have illustrated the benefits of our approach, explaining isimple approach in this work [5, 2]. Different habitat type sys-
Chapter 4 in detail several techniques pertaining to differentems and ways of deriving abundances from observational den-
goals and levels of biological knowledge, using examples angity data could be studied and tested as well. The study of the
discussing the interpretation of results. interplay of habitat and abundance would benefit from expert-
We have also tested our methodology using real-world datagiven biological knowledgeP(H, A) in stead of our purely
Chapter 6 provides an analysis of rivers Simo and Tornio. Habiempirical modeling in this study.
tat sampling bias and the relationship of habitat and abundance In this work our methodology has been used for analysis of
were studied both together and separately. Our results indexisting data sets. A tool aiding planning in addition to pro-
cated a consistent, yet non-optimal electrofishing bias for botkiding analyses could be built as well. This tool would give a
rivers. The fact that electrofishing has not been even nearlfishery scientist a chance to try out different models encoding
bias-minimal in these rivers can be explained by a set of stridbiological knowledge, seeing how they interact with the data.
Also, the biological knowledge could be fixed, and the diver-



Table 8. Example 5.3. (a) The time series of observed densities. (b) Discretized relative densities per habitat type.

Year S1 S2 S3 S4 S5 Se6 S7 S8 S9 S10 Year H= poor H= gOOd
Ageclass0] 1.1 35 04 3.0 0.9 Age class 0| scarce abundan
Y1 Ageclass1] 0.3 18 01 21 04 Y1 Age class 1| scarce abundan
Ageclass2/ 01 0.7 0 11 0.1 Age class 2| scarce abundan
Ageclass0| 1.8 6.2 5.0 Age class 0| scarce abundan
Y2 Ageclass1| 0.4 3.2 2.4 Y2 Age class 1| scarce abundan
Ageclass2| 0.1 0.3 0.5 Age class 2| scarce abundan
Ageclass0| 0.9 6.1 3.1 4.3 Age class 0| scarce abundan
Y3 Ageclass1] 0.8 2.9 35 15 Y3 Age class 1| scarce abundan
Ageclass2| 1.1 05 0.1 0.3 Age class 2| abundant scarce
Ageclass0| 4.2 3.2 3.4 3.6 Age class 0| abundant scarce
Ya Ageclass1l| 04 23 2.2 1.2 Ya Age class 1| scarce abundan
Ageclass2| 0.6 0.3 0.1 0.1 Age class 2| abundant scarce
Ageclass0| 1.3 6.0 4.5 3.9 Age class 0| scarce abundan
Ys Ageclass1l] 05 24 25 25 Ys Age class 1| scarce abundan
Ageclass2| 0.5 04 0.3 0.4 Age class 2| abundant scarce

@

gence of different empirical models from it measured. The op-
timality of suggested selections of sites could be measured by
the tool as well, and bias-minimal selections suggested.
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Fig. 11. Habitat sampling, river Tornio (Finnish side). (a) Yearly habitat sampling bias. (b) Yearly habitat sampling bias, different aspect:
of habitat studied separately. (c) Actual yearly site choices vs. bias-minimal choices for a site percentage and a given restriction on
choices. (d) Momentary changes in habitat sampling bias, i.e. the convergence of the empirical distribution of electrofished habitat type
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Fig. 12. Convergence of the empirical joint distribution, river Tornio, Finnish side. (a) Momentary changes in the empirical joint
distribution. (b) Momentary changes in the abundance - habitat relationship.
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Fig. 13. Habitat sampling, river Simo. (a) Yearly habitat sampling bias. (b) Yearly habitat sampling bias, different aspects of habitat
studied separately. (c) Actual yearly site choices vs. bias-minimal choices for a site percentage and a given restriction on choices. (d)

Momentary changes in habitat sampling bias, i.e. the convergence of the empirical distribution of electrofished habitat types.
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Fig. 14. Convergence of the empirical joint distribution, river Simo. (a) Momentary changes in the empirical joint distribution, the whole
time series. (b) Momentary changes in the empirical joint distribution, a closer look at the last ten years. (c) Momentary changes in the
abundance - habitat relationship, the whole time series. (d) Momentary changes in the abundance - habitat relationship, a closer look ¢
the last ten years.
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