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Helsinki Institute for Information Technology HIIT

Tammasaarenkatu 3, Helsinki, Finland

PO BOX 9800

FIN-02015 HUT, Finland

http://www.hiit.fi

HIIT Technical Reports 2002–6

ISSN 1458-9451

Copyright c© 2002 held by the authors

NB. The HIIT Technical Reports series is intended for rapid dissemination of results

produced by the HIIT researchers. Therefore, some of the results may also be later

published as scientific articles elsewhere.



Cross-analysis of Gulf of Bothnia wild salmon rivers
using Bayesian networks

Kimmo Valtonen, Tommi Mononen, Petri Myllymäki, Henry Tirri, Jaakko Erkinaro, Erkki
Jokikokko, Sakari Kuikka, Atso Romakkaniemi, Lars Karlsson, and Ingemar Perä

Abstract: We present a methodology allowing the transfer of knowledge from a wild salmon river to another via a
predictive model for the chosen population status indicator. From the management point of view, the production of wild
smolts is the most important of such indicators. However, in our real-world data from Finnish and Swedish Gulf of
Bothnia rivers we only have data on the number of wild smolts available for two of the rivers, making the direct empirical
learning and validation of models learned from the data for the other rivers impossible, but the suggested methodology can
be used to transfer knowledge from the two rivers to the other rivers. To validate the suggested approach, we also apply
the methodology in the prediction of parr density, in which case the results can be validated, and check by strict empirical
procedures for our success in the transfer of knowledge. Our framework is probabilistic and our approach Bayesian,
allowing us to handle uncertainty in a consistent and well-defined fashion. Our model family is Bayesian networks, a
class of models with a simple graphical representation allowing visualization of the obtained knowledge, being also the
state-of-the-art classifier in many domains. Our emphasis is on empirical modeling: our aim is to see what can be learned
from the existing real-world data. With the needs of fisheries management in mind, we highlight the role of the loss
function in modeling, evaluating our models also in a setting where it is a greater error to over- than underestimate the
size of a population.

1. Introduction

The main goal of salmon fisheries management is to maxi-
mize the level of fishing, while maintaining a stock of sufficient
size and genetic diversity. A method for assessing and predict-
ing the status of a river’s salmon population is needed to tackle
this task. The aim of this paper is to exhibit such a methodol-
ogy, demonstrating its use in the transfer of knowledge across
the wild salmon rivers of the Gulf of Bothnia.

We limit ourselves to the nursery river phase in the life cycle
of salmon. We divide this phase into three stages:

1. The reproduction stage. The output of this stage, eggs,
depends on the abundance of ascending adults and their
success in spawning, affected by environmental factors
such as the M74 syndrome.

2. The parr stage. This is the period lasting from one up
to as many as six years, during which the egg-emerged
juvenile salmon stay in the river.

3. The smolt stage. Having undergone physiological changes,
young salmon migrate downstream to the sea.

From the managerial point of view, the smolt stage is the
most important one: the number of wild smolts is the yardstick
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of choice for determining the status of a river’s wild salmon
population. However, learning empirical models from our set
of available real-world data is fundamentally problematic: we
only have reliable estimates of wild smolt production for two
rivers in the Gulf of Bothnia area: rivers Simo and Tornio. The
estimates provided for the other rivers are scaled–down ver-
sions of the production estimates for these two rivers, and thus
cannot be used either for learning or validating empirical mod-
els.

Hence, we approach the problem by learning our models
from the combined data for rivers Simo and Tornio, and in ad-
dition to learning non-validatable predictive models for smolt
production, we also learn predictive models for the immedi-
ately preceding stage in the life cycle of salmon. These models
can be validated empirically, and thus, to some extent, we are
able to evaluate empirically whether the transfer of knowledge
is feasible in this domain.

This report is structured as follows. We first outline our ap-
proach to modeling in Chapter 2, proceeding to describe our
real-world data sets in detail in Chapter 3. In Chapter 4 we
define our methodology formally, giving examples of its ap-
plication. The results of our empirical work are described in
Chapter 5. Finally, we discuss our results in Chapter 6.

2. Modeling approach

To be able to handle uncertainty in a consistent and well-
defined fashion, we adopt the probabilistic framework, and
choose the Bayesian approach within it, with Bayesian net-
works as our model family. Our goal is to learn a predictive
model for an indicator of population status based on the avail-
able data, using different criteria for model selection. Our em-
phasis is on empirical modeling: although our methodology
allows the expression of biological knowledge, in this paper
we obtain our models from the existing data alone. The results
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should thus be seen as a baseline to compare knowledge to,
as well as a measurement of the amount of information in the
available data from the point of view of population status as-
sessment.

Our point of view is managerial: the resulting models should
generalize well, and be capable of taking into account the needs
of fisheries management. By this we mean that our goal is to
find models that predict well in the future. The main problem
in learning predictive models is to avoid overfitting, i.e. the sit-
uation where we fit our model too accurately to the available
data, compromising our predictive performance for future data.

To test whether we have succeeded in generalizing, we vali-
date our models using strict procedures, where pains are taken
to ensure that the model learner is never allowed to gain infor-
mation from the validation set. This goal of avoiding the fit of
an unnecessarily complex model to the data is especially called
upon in our empirical work because of the relatively short time
series available. We also highlight the role of the loss func-
tion in the prediction scheme. That is, not only do we look
for a model with a small amount of error in its predictions,
but keeping in mind the aims of fisheries management we also
study the difference between a situation where it does not mat-
ter whether we over- or underestimate, and the more realistic
situation where we prefer a pessimistic model, i.e. one whose
errors tend to be underestimates rather than overestimates.

As already mentioned in Chapter 1, the validation of our
models is fundamentally difficult in the domain: predictive mod-
els for smolt production cannot be validated empirically except
for rivers Simo and Tornio.

What can be done then? In [11] we tested the predictive per-
formance of our methodology by learning a predictive model
for smolt production from the combined data for the two rivers
(Simo and Tornio) that we do have reliable smolt production
estimates for. Since our results in that work, using artificial
splits of the available data to training and validation data, were
encouraging, in this work we learn similar models from all of
the combined data for Simo and Tornio and proceed to predict
the smolt production of the other rivers. The resulting predic-
tions cannot be validated empirically, as already noted, but we
present them for the domain experts to study.

The success of predicting for Simo and Tornio naturally does
not ensure that the other rivers are similar enough to Simo and
Tornio for this transfer of knowledge to work. Already in [11]
we tested the transferability of smolt production knowledge
from one river to another, with reasonable success. As an at-
tempt at measuring the transferability of knowledge in general,
in this work we learn models for the prediction of the density of
> 0+ parr from the data for rivers Simo and Tornio. Although
the density of older parr is not our prime choice of focus, it
is the immediately preceding stage to smoltifying, so it should
serve as a next-best indicator of the status of a population, be-
ing also validatable for all rivers.

Finally, to see whether the success or failure of the transfer
is due to inherently different natures of the rivers as biological
systems or to the differing natures of our measurements from
them, we learn models for the prediction of the density of >
0+ parr from the data for one side of river Tornio, validating
the model by the data for the other side.

3. Real-world data sets

The data sets available to us include data on electrofishing,
M74, river catches, fish ladder counts of ascending adults, and
estimated numbers of seabound wild smolts. Table 1 shows our
set of variables.

We will now elaborate on our domain.

3.1. Reproduction stage data
The earliest stage in the life cycle of salmon, the egg stage,

depends both on the abundance of ascending adults and on
spawning success. Rivers Kalix,Öre, and Vindel possess a fish
ladder, providing accurate counts of ascending adults, denoted
by Fi. For the other rivers, the only available means of measur-
ing the abundance of ascending adults is via catches of adults
in the river. Both the sum of weights and the number of fish
are available for each year. We will denote catches in numbers
at year i by Cn

i and catches in kilos by Ck
i . Unfortunately we

lack data on the fishing effort, which makes this data a some-
what uncertain indicator of abundance.

To take spawning success and environmental factors into ac-
count to some degree, we also use data on M74 mortality (in
percentages) at year i, denoted by Mi.

To enable us to transfer knowledge about adult abundance
from non-fish ladder rivers to fish ladder rivers and v.v., we
devised a summarizing variable Ai, whose values are those of
Fi, if they are available for a river, and Cn

i , if they are not.
Naturally, we do not assume that these two variables would be
comparable as absolute values but since we normalize our data
(see Chapter 5.1), we can treat the normalized values of both
variables as relative values describing adult abundance, with
the unavoidable reservation that the catch data lack the fishing
effort information.

As an attempt at a synthetic variable characterizing repro-
duction as a whole, we created a “M74-affected” version of
the adult abundance variable Ai, describing the estimated ef-
fect of M74 on reproduction. The values of this new variable
Rn

i (reproduction in numbers) are the values of Ai multiplied
by (1 − Mi/100).

3.2. Parr stage data
All of the rivers possess density estimates based on elec-

trofishing data.
For each year in a time series for a river we have electrofish-

ing data from a subset of the total set of electrofishing sites in
the river. The yearly choices of sites and their number vary over
time, especially in the beginning of our time series. See Fig. 1
for the variance in the yearly locations of electrofishing sites in
rivers Simo and Tornio, the two rivers we teach our models on.

Our data set comprises electrofishing data at three levels:

1. The low level, where each record describes a single in-
dividual fish caught by electrofishing.

2. The intermediate level, where each record describes a
single fishing run. That is, as electrofishing is carried out
in 1 - 3 separate runs, we have a record for each of the
individual runs at a specific site.

3. The high level, where each record summarizes the elec-
trofishing data for an entire river for a single year.



Table 1. An overview of the domain and the availability of data. “*” signifies availability.

Stage Variable group Variable Symbol River
B K L L Ö R S T V
y a j ö r å i o i
s l u g e n m r n
k i n d e o n d
e x g e i e

a o l
n

Fish ladder Numbers Fi * * *
Catch Catch in kilos Ck

i * * * * * * * * *
Reproduction Catch in numbers Cn

i * * * * * * * * *
M74 M74 mortality Mi * * * *
Adult abundance Numbers Ai * * * * * * * * *

Reproduction in numbers Rn
i * * * *

Average density 0+ L0+

i * * * * *
Average length-class Average density 1+ * * * * *
densities Average density 2+ * * * * *

Parr Average density >0+ L>0+

i * * * * *
Estimated density 0+ E0+

i * * * * * * * * *
Estimated densities Estimated density >0+ E>0+

i * * * * * * * * *
Estimated density 1+ * * * *
Estimated density >1+ * * * *

Estimated number of
Smolt Smolt production wild smolts Si * *

The lowest level is not directly useful for the main problem
here, since we are not interested in modeling a single fish. On
the other hand, this type of data contains exact measurements
such as length and weight instead of estimates. It also con-
tains a relatively large number of samples (many thousands).
An important observation is that this data is highly valuable
in the sense that it can be used to classify fish based on their
length.

In fact, the data at the intermediate level are just a summing
up of the lowest-level data, augmented by data on fishing runs
that caught no fish. Therefore we created our own version of
intermediate (fishing run) level data directly from the low-level
data, adding to the result the unsuccessful fishing runs to avoid
positive bias.

Because our aim is to have a model transferable from rivers
Simo and Tornio to the other rivers, we take all this site-specific
data and summarize it for each year in terms of densities per
age class. A model containing the sites themselves as random
variables could naturally not be applied to a river with a differ-
ent set of sites. We have adopted and compared two ways of
obtaining age-class density estimates. The first one is based on
estimation by domain experts using an electorfishing model,
the second one on average observed densities per length class.

3.2.1. Estimation by an electrofishing model
The electrofishing data provides us with ready-made density

estimates at least for age groups “0+” and “> 0+”. For rivers
Byske, Kalix, Råne and Tornio we possess a finer-grained di-
vision to “0+”, “1+” and“> 1+”. However, since we want to
compare all models, we employ the coarser division. We will

use E0+
i and E>0+

i to denote the expert-estimated density at
year i of age 0+ and older than 0+ parr respectively.

These estimates are derived by domain experts using an elec-
trofishing model where the actual amount of fish at a site is es-
timated using measurements from a series of fishing runs. The
main assumption is that the catchability of the fish stays con-
stant across the series. It is also assumed that the age of the
fish can be determined reliably (but actually this information
is often missing).

3.2.2. Average length-class densities
To have a point of comparison, we decided to provide an al-

ternative, more data-oriented way of estimating yearly density
for each disjoint class of fish. An important point to note is
that our assumptions are somewhat weaker than those adopted
in the estimates of the domain experts’ electrofishing model.

During electrofishing, usually more than one fishing run is
performed. However, the overall number of such runs, per-
formed consecutively at the same site on the same day, varies.
The most common number of runs is three, but sometimes
there are fewer runs. Thus, we chose to always use the first
run only, to have comparable data for all of the rivers. By tak-
ing the first fishing runs only, we weaken the assumption of
constant catchability made in the domain expert estimates. We
only assume the catchability of fish during the first fishing run
to be the same as that of any first fishing run.

As observed above, we have ready-made ages for the fish
in the data, but for part of the data the age is missing. As an
alternative approach, we drop this assumption, and classify the
fish in another disjoint and exhaustive way: by their length.



Fig. 1. The yearly locations of electrofished sites. (a) River Tornio (the Finnish side). (b) River Simo.
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We use 7 and 11 cm as the split points, i.e. all fish smaller
than 7 cm were considered to be 0+, all fish longer than 11cm
2+, and all others 1+. These split points were determined by
experts. To see how they correspond to the empirical length
distributions of age-classified fish in the data sets for rivers
Simo and Tornio, see Fig. 2. Note that the plot for river Tornio
also shows how under-represented 0+ fish are in the aged sub-
set of data for river Tornio, due to missing age labels for small
fish.

Given these observed densities from first fishing runs for fish
of certain length class, we assume that the first fishing runs are
comparable across the sites sampled during a year, and take the
average of the observed densities as our estimate of the density
for that length class during that year. We assume here that the
bias in the selection of sites to electrofish stays constant across
our time series. The veracity of this assumption in this data set
was studied by us in [12], where it was seen to hold quite well.

We will use L0+
i and L>0+

i to denote the average density at
year i of length-class 0+ and longer parr respectively.

This approach of course requires that fishing run-level data
is available for a river. Of the rivers we are building predictive
models for, Kalix, Öre and Vindel can make use of L0+

i and
L>0+

i .

3.2.3. Comparison of estimation methods
The biological knowledge -incorporating electrofishing model

used by domain experts is more sophisticated than the length-
class approach put forth here. The length-class method should
be viewed as a data-based baseline: any system with stronger
assumptions should at the least be able to beat it in the predic-
tive sense.

Fig. 3 and Fig. 4 compare expert estimates with length-class
estimates in rivers Simo and Tornio. It can be seen that for
river Simo there is a plausible linear correlation between the
two estimates, whereas for river Tornio only the plot for > 0+
parr exhibits such tendencies. It has to be kept in mind that we
have no or very little data for much of the range — only the
low end of the range is well covered.

3.3. Smolt stage data
The smolt stage is characterized as Si, the number of seabound

smolts at year i, consisting of domain expert estimates based
on mark-recapture data.

4. Methodology

Adopting the probabilistic framework, we assume our mod-
els to be probability distributions. Since we are in this work
interested in finding a model that predicts well for a particular
variable, our task is somewhat different from the general goal
of modeling the joint distribution of all variables describing a
river’s salmon population.

4.1. The focused prediction problem
Classification means the task of predicting the value of a dis-

crete class variable, given the values of other variables, called
predictors. In classifier learning the goal is to build accurate
classifiers given a sample of classified instances, i.e. vectors
consisting of the values of the predictors together with the cor-
responding value for the class variable.

In this work, our predicted variables are in fact not discrete,
but continuous, and, properly speaking, we are doing regres-
sion. We handle this by discretizing the predicted variable and
interpreting our posterior to be a continuous histogram distri-
bution. Our point estimate will then be the expected value of
this histogram. Hence, we can use focused prediction as a gen-
eral term covering both cases.

In learning a focused predictor, the goal is to build accu-
rate predictors from a given training data set D = (xN , yN),
a matrix of N vectors each consisting of values of m predic-
tor variables X1, . . . , Xm, together with a value for the pre-
dicted variable Y . Together, our variables form the domain
V = {X1, . . . , Xm, Y }. We will use notation Vi to refer to any
variable in our domain, whether it is the focus of prediction or
not. In the interest of simplicity, from now on we assume the
predictor variables Xi to be discrete as well. We discretize the
continuous variables in our data sets, so this assumption does



Fig. 2. The empirical length distributions of fish aged in the data. (a) River Tornio (the Finnish side). (b) River Simo.
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Fig. 3. Comparison of density estimates made by domain experts to average length-class estimates, river Simo. Each point is a pair of
corresponding estimates for a year. (a) 0+ parr. (b) Older parr.
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not constrain us in any way. In general formal terms, our aim
is to produce the predictive distribution P (Y | X1, . . . , Xm).

Since our main task in this work is to predict the wild salmon
production in a river using all available information, our focus
is primarily on Si, the number of smolts at year i. Furthermore,
we aim at building a model that allows us to predict for a par-
ticular year i given the past, that is, data from years preceding
i, but not from year i itself. As we are constrained to the nurs-
ery river phase, we cannot look more than five years back in
time, since we assume that after six years all juvenile salmon
have left the river. Putting all this together, the predictive dis-

tribution we are aiming at is

(1)

P (Si | Cn
i−1, C

k
i−1, Mi−1, Ai−1, R

n
i−1,

E0+
i−1, E

>0+
i−1 , L0+

i−1, L
>0+
i−1 , . . . ,

Cn
i−5, C

k
i−5, Mi−5, Ai−5, R

n
i−5,

E0+
i−5, E

>0+
i−5 , L0+

i−5, L
>0+
i−5 ).

Note that since the predicted rivers do not possess reliable
smolt production estimates, we cannot use information on smolt
production in the past when building our models, hence Si−1,
Si−2 etc. are not eligible as predictors. Also, as shown in Ta-
ble 1, data for some of the variables can be lacking when pre-
dicting for a particular river. For example, we have no aver-
age length-class density estimates or M74 data for river Lögde,



Fig. 4. Comparison of density estimates made by domain experts to average length-class estimates, river Tornio (Finnish side). Each
point is a pair of corresponding estimates for a year. (a) 0+ parr. (b) Older parr.
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thus our predictive distribution is in this case

P (Si | Cn
i−1, C

k
i−1, Ai−1, E

0+
i−1, E

>0+
i−1 , . . . ,

Cn
i−5, C

k
i−5, Ai−5, E

0+
i−5

, E>0+
i−5

).

4.2. Bayesian networks
Taking the Bayesian approach within the probabilistic frame-

work, we choose Bayesian networks1 as our model family.
Bayesian networks [9] define joint probability distributions via
a set of independence assumptions BS that can be conveniently
expressed as a directed acyclic graph (see Fig. 5(a)).

The nodes of the directed acyclic graph correspond to vari-
ables, while the arcs represent the independence assumptions.
That is, whenever an arc is missing, we assume the two vari-
ables in question to be pairwise conditionally independent.

The model families B we consider thus consist of a finite
number of probabilistic Bayesian network structures

B = {BS1
, . . . , BSK

}.

One of the key properties of Bayesian networks is that the joint
probability distribution can be factorized as follows:

(2) P (X1, . . . , Xm, Y ) =

m+1
∏

i=1

P (Vi | Πi),

where Πi denotes the parents (immediate predecessors in the
graph) of variable Vi. The parameters BΘ of a Bayesian net-
work model determine the local conditional probability distri-
butions P (Vi | Πi). This means that a Bayesian network struc-
ture BS , together with BΘ, defines a joint probability distribu-
tion P (X1, . . . , Xm, Y | BS , BΘ) via (2).

1 For an interactive tutorial on Bayesian networks and links to reference mate-
rial, see site http://b-course.hiit.fi.

Example 4.1. Let our domain be

V = {Si, C
n
i−3, Mi−2, E

0+
i−2

, E>0+
i−1

}

i.e. each data vector consists of an estimate of the number of
smolts at year i, catches in numbers three years earlier, M74
percentages two years earlier, domain expert estimates of the
densities of 0+ parr two years back and domain expert esti-
mates of the densities of older parr in the previous year.

Let Fig. 5(b) present graphically a structure BSi
∈ B de-

scribing the domain. Given Fig. 5(b), our joint distribution can
be written down as

P (Si,C
n
i−3, Mi−2, E

0+
i−2

, E>0+
i−1

) =

P (Cn
i−3)P (Mi−2)

· P (E0+
i−2 | Cn

i−3, Mi−2)P (E>0+
i−1 | E0+

i−2)

· P (Si | E0+
i−2, E

>0+
i−1 ).

4.3. Model selection criteria
Given a data set D and a set of possible Bayesian network

structures B, we are faced with the task of selecting a model
structure from our set of candidates. Our aim is to find the
model (structure) that describes the domain the best, having
seen a set of observations D from it. In this work we use two
different selection criteria, one a purely Bayesian one, the other
an empirical one with advantages which will become clearer in
Chapter 4.6.

4.3.1. The marginal likelihood criterion
Given a training set D it is possible, with certain technical

assumptions (see [5]), to compute the predictive distribution
for a single Bayesian network structure BS via

(3)

P (X1, . . . , Xm, Y | BS ,D) =
∫

P (X1, . . . , Xm, Y | BS , BΘ,D)

· P (BΘ | BS ,D)dBΘ.



Fig. 5. (a) An example of a Bayesian network representing the joint distribution P (V1, V2, V3) as P (V1)P (V2|V1)P (V3|V1, V2). (b) The
structure BSi

of Example 4.1.
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If we now, instead of using only a single model structure, aver-
age over all Bayesian network structures BS ∈ B in our model
family, we get

(4) P (X1, . . . , Xm, Y | D,B) =
∑

BS∈B

P (X1, . . . , Xm, Y | BS ,D)P (BS | D,B),

where the first term was given in (3). The second term is the
posterior probability of BS after seeing the data D. Intuitively,
if one wants to choose a model from B, it makes sense to se-
lect the model maximizing this posterior since that particular
model has the highest overall weight in sum (4). Assuming the
prior P (BS | B) to be uniform, this is equivalent to choosing
the model with the highest marginal likelihood P (D | BS ,B),
since

(5) P (BS | D,B) ∝ P (D | BS ,B)P (BS | B).

With certain technical assumptions [5], the marginal likeli-
hood can be calculated in closed form:

(6) P (D | BS ,B) =

m+1
∏

i=1

qi
∏

j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

ri
∏

k=1

Γ(N ′
ijk + Nijk)

Γ(N ′
ijk)

,

where Γ denotes the gamma function, qi is the number of value
combinations for parents of variable Vi, ri is the number of
values variable Vi has, Nijk are the sufficient statistics (the
number of cases in the data where variable i’s parents’ values
are in configuration (value combination) j when the variable
itself has value k), Nij =

∑ri

k=1
Nijk and N ′

ij =
∑ri

k=1
N ′

ijk .
The constants N ′

ijk are the hyperparameters determining the
parameter prior distribution P (BΘ | BS ,B). Following the
suggestion in [1], in our empirical work, we have picked the
prior

(7) N ′
ijk =

N ′

ri · qi

as our parameter prior, with the setting N ′ = 1. Intuitively put
this means that we deem that all states of the conditional distri-
bution of a variable given its parents are a priori equally likely.

This prior is also overridden by data relatively fast (N ′ is rel-
atively small). Our reasons are twofold. Firstly, since our do-
main comprises tens of predictors (the exact number depends
on the amount of data available for the river we are predict-
ing for), and we seek among different discretizations, it would
be a formidable task for experts to assess and specify the pa-
rameter priors for all possible structures and discretizations.
Secondly, the amount of data is relatively small from the view-
point of empirical modeling. Even the combined data for Simo
and Tornio has only 32 vectors. Any strong prior is prone to
override the data, whereas our aim in this paper is to see what
can be learned from the existing data.

Example 4.2. Let our domain be V = {Si, R
n
i−5}, i.e. each

data vector consists of the estimated number of smolts at year
i and an index of reproduction in numbers five years earlier.

Let us consider all possible Bayesian network structures in
this domain, i.e. B = {BS1

, BS2
, BS3

}, where BS1
corre-

sponds to the assumption that Si is independent of Rn
i−5 and

v.v., and BS2
and BS3

are models where they are dependent.
Fig. 6 shows the set of structures B.

For simplicity of exposition, let us further assume that both
the number of smolts and the reproduction index have been
discretized to only two categories: few and many.

Let D1 consist of 20 years of data. The sufficient statistics of
D1 are shown in Table 2(a). You can see that regardless of the
value of Rn

i−5, the relationship of events “Si= few” and “Si=
many” stays more or less the same.

We can now calculate the marginal likelihood of all struc-
tures BS ∈ B using (6) and prior (7). For example,

P (D1 |BS2
,B) =

Γ( 1

2
)

Γ( 1

2
+ 12)

(

Γ( 1

4
+ 10)

Γ( 1

4
)

·
Γ( 1

4
+ 2)

Γ( 1

4
)

)

·
Γ( 1

2
)

Γ( 1

2
+ 8)

(

Γ( 1

4
+ 8)

Γ( 1

4
)

·
Γ( 1

4
+ 0)

Γ( 1

4
)

)

.

The marginal likelihood of each structure is shown in Table 2(b).
It can be seen that the structure with no arc (dependency) is

slightly preferred, being 1.25 times more likely than the struc-
tures with an arc, and that the direction of the arc doesn’t mat-
ter in this case: BS2

and BS3
are equivalent with respect to

our criterion, given our prior and the data set D1 (to see why
this is so, see [5]).



Fig. 6. B of Example 4.2.
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Table 2. Example 4.2. (a) Nijk of D1, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using data D1.

Rn
i−5= few Rn

i−5= many
Si= few 10 8
Si= many 2 0

(a)

marginal likelihood
BS1

6.55 · 10−11

BS2
5.23 · 10−11

BS3
5.23 · 10−11

(b)

Let D2 now be a similar data set of 20 years with the same
variables, but with different sufficient statistics as shown in Ta-
ble 3(a). In other words, the sufficient statistics of the event
“Rn

i−5 = many” have been exchanged, making the sufficient
statistics of “Si= few” and “Si= many” radically different
depending on the value of Rn

i−5. Calculating the marginal like-
lihoods, we arrive at the results of Table 3(b), which show that
D2 provides evidence for a dependency between Si and Rn

i−5,
indicating a 263 times higher likelihood than the structure with
no dependency.

4.3.2. Empirical criteria
Another, non-Bayesian, way of scoring model structures is

by using an empirical criterion, i.e. by comparing the predic-
tive performance of structure candidates in a test set. The pa-
rameters BΘ for a candidate structure BS are first learned from
a training data set. The predictive performance of the resulting
model is then measured in the test set in terms of the loss func-
tion (see Chapter 4.6) adopted. In Chapter 4.4.1 we discuss the
use of empirical criteria for structure search in more detail.

4.4. Searching for the best structure
Even using the criteria of the previous chapter for compar-

ing structures, searching among all possible Bayesian network
structures is computationally too hard for practical purposes,
especially in our domain where there are tens of predictors:
the problem is NP-hard if a node can have more than one par-
ent. Therefore, a natural approach is to limit B to a subset of
all possible structures.

As discussed above, a Bayesian network model represents
the joint distribution P (X1, . . . , Xm, Y ). From this joint dis-
tribution we aim to extract the predictive distribution P (Y |
X1, . . . , Xm). We can distinguish two different approaches to
estimating the predictive distribution [2]: in the diagnostic
paradigm one tries to estimate the distribution directly, while in
the sampling paradigm one estimates the distributions
P (X1, . . . , Xm | Y ) and P (Y ), from which the desired pre-
dictive distribution can be computed by using the Bayes rule,

which implies

(8) P (Y | X1, . . . , Xm) ∝ P (X1, . . . , Xm | Y )P (Y ).

In visual terms, in the sampling paradigm all of the arcs con-
nected to the focus node are leaving arcs, in the diagnostic
paradigm arriving arcs.

While our approach here is general, biological knowledge
could be taken into consideration when choosing the set of can-
didate structures. We will now describe some means of search-
ing for good structures from within a subset of all possible
structures in both paradigms.

4.4.1. The sampling paradigm
An example of a sampling-type Bayesian network is the

Naive Bayes model, a Bayesian network with one arc from the
predicted node to each of the predictor nodes (see Fig. 7). This
graph structure represents the assumption that the predictors
are independent of each other, given the value of the predicted
variable. This assumption might sound naive, but the Naive
Bayes classifier is in fact in many real-world cases the state-
of-the-art classifier, as, for example, its success in prediction
competitions like the KDD Cup and the CoIL competition il-
lustrate. Naturally, often this independence assumption is more
or less false. We can try to counter this deficiency by several
means.

One strategy is variable selection. In variable selection only
variables which have a sufficient dependency from the focus of
prediction are modeled as dependent on it. In graphical terms,
we seek for a subset of arcs from the predicted variable to the
predictors. To do this, we use either one of the criteria of Chap-
ter 4.3 to assess whether to draw an arc from the focus of pre-
diction to a predictor.

Example 4.3. Let our domain be

V= {Si,E
0+
i−1,E>0+

i−1 ,E0+
i−2,E>0+

i−2 },

i.e. in addition to the focus of prediction, Si, we have density
estimates from the two previous years. As in earlier examples,
let all data be discretized to two categories, few and many.



Table 3. Example 4.2. (a) Nijk of D2, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using data D2.

Rn
i−5= few Rn

i−5= many
Si= few 10 0
Si= many 2 8

(a)

marginal likelihood
BS1

0.02 · 10−11

BS2
5.23 · 10−11

BS3
5.23 · 10−11

(b)

Fig. 7. The Naive Bayes structure, i.e. the focus of prediction is V1 and P (V1, V2, V3, V4, V5, V6) = P (V1)P (V2 | V1)P (V3 | V1)P (V4 |
V1)P (V5 | V1)P (V6 | V1)P (V7 | V1).
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The sufficient statistics of a data set D consisting of 20 years
of data are shown in Table 4(a).

Let us pick marginal likelihood as our structure search cri-
terion. As in Example 4.2, let us use Buntine’s prior for our
parameters. Because we have restricted our set of structures B
to those in the Naive Bayes class, all arcs are of the Si −→ X
type, where X is any predictor. The marginal likelihood of
each possible focus of prediction–predictor substructure, i.e.
the score of not having vs. adding an arc is shown in Table 4(b).

We can see that it is 330 times more likely that there is a
dependency between Si and E0+

i−2, than that there is not, E>0+
i−2

is slightly on the independent side, E0+
i−1 more so, and E>0+

i−1 is
shown to be 1.26 times more likely to be dependent on Si than
not.

An important practical feature of the marginal likelihood cri-
terion is that if any node has at most one parent, the criterion
decomposes to subscores for each arc, i.e. we can evaluate the
gain or loss of adding an arc regardless of the rest of the struc-
ture. This naturally makes searching in this restricted structure
space very efficient.

Example 4.4. Since no node has more than one parent in the
model class of example 4.3, we can express the varying evi-
dences for dependency between variables graphically by let-
ting the thickness of an arc indicate the amount of evidence
(marginal likelihood) for that particular arc. Because the range
of values for the likelihood ratio can vary from 1 to thousands
in practice, we take its logarithm to keep the result visually
pleasing. Furthermore, if there is no arc from the focus of pre-
diction Si to a predictor in the set of structures under con-
sideration, that predictor has no effect on the predicted vari-
able. Thus, we can leave out such unconnected nodes from our
graph, arriving at Fig. 8 in our case.

In the case of an empirical criterion the criterion is not sim-
ilarly decomposable, so a search algorithm is needed. Since

the number of possible structures can be huge, a randomized
search is a natural choice. In our empirical work we have used
stochastic greedy search: we pick randomly an arc operation to
be performed, and evaluate empirically whether it is likely to
enhance predictive performance in the validation set. Note that
the model must not see any of the validation set prior to the ac-
tual validation. Otherwise the empirical criterion will overfit to
the validation set, providing misleadingly positive results. For
this reason, the predictive value of an arc operation has to be
assessed by splitting randomly the training data to a “second-
order” training set and a test set. The two structures, prior and
after the arc operation, are then both taught on the “second-
order” training set, and their performance assessed by predict-
ing for the test set. To avoid good or bad luck in the choice of
a split, this splitting is done a number of times, and the perfor-
mance measured by a loss function (see Chapter 4.6).

We can also relax the independence assumption by other
means, e.g. by connecting highly relevant predictors via a fully
connected subnetwork. If we connect subsets of predictors fully,
we speak of a partitioning network (see Fig. 9(a)). A problem
with this approach is that the number of parameters grows ex-
ponentially with the sizes of the subsets. In our task, where we
have a small amount of data, this is a major concern. See [7]
for more on partitioning networks.

4.4.2. The diagnostic paradigm

A major problem in the learning of diagnostic structures
from data is the number of parameters: the conditional distri-
bution of the focus variable given the predictors has a number
of parameters growing exponentially with the number of pre-
dictors.

To see this, let us look at the case of using marginal like-
lihood as our search criterion. First of all, in addition to the
previous definition of marginal likelihood, we can also define



Table 4. Example 4.3. (a) Nijk , i.e. the numbers of cases where the variables have a particular value combination in the data. (b) The
marginal likelihoods of not having vs. adding an arc between all focus of prediction - predictor pairs.

Si= few Si= many
E0+

i−2= few 9 1
E0+

i−2= many 1 9
E>0+

i−2 = few 8 4
E>0+

i−2 = many 2 6
E0+

i−1= few 5 5
E0+

i−1= many 5 5
E>0+

i−1 = few 5 1
E>0+

i−1 = many 5 9

(a)

marginal likelihood
Si E0+

i−2 2.82 · 10−14

Si −→ E0+

i−2 933.31 · 10−14

Si E>0+

i−2 4.22 · 10−14

Si −→ E>0+

i−2 3.46 · 10−14

Si E0+

i−1 2.82 · 10−14

Si −→ E0+

i−1 0.37 · 10−14

Si E>0+

i−1 14.62 · 10−14

Si −→ E>0+

i−1 18.47 · 10−14

(b)

Fig. 8. Example 4.4. The structure discovered in Example 4.3 using marginal likelihood as the search criterion. The thickness of the arcs
corresponds logarithmically to the evidence for that particular dependency. Only nodes connected to the focus of prediction (i.e. with
higher evidence for an arc than for its absence) shown.

���

������ �
	 ���
���� ���

the supervised (conditional) marginal likelihood as

(9)

P (yN |xN , BS ,B) =
∫

P (yN | xN , BS , BΘ,B)

· P (BΘ | xN , BS,B) dBΘ,

Our motivation for this definition is that the unsupervised marginal
likelihood criterion tends to favor models that model well both
the predictors and the focus of prediction, which is clearly
nonoptimal with respect to the focused prediction task. (See [3,
6, 8]).

The supervised marginal likelihood (9) can be computed in
closed form similarly to (6):

(10)

P (yN |xN , BS ,B) =
qy
∏

j=1

Γ(N ′
j)

Γ(N ′
j + Nj)

ry
∏

k=1

Γ(N ′
jk + Njk)

Γ(N ′
jk)

.

where qy is the number of value configurations for the predic-
tors X1, . . . , Xm, ry is the number of values Y (the focus of
prediction) has, Njk are the sufficient statistics (the number of
cases in the data where the predictor values are in configura-
tion j and Y has value k), and Nj =

∑ry

k=1
Njk. N ′

jk is our
parameter prior as earlier.

Using (10) we can in principle calculate the supervised marginal
likelihood of any diagnostic structure. The impracticality of the

procedure in a domain like ours (with tens of predictors) is evi-
dent, however: qy grows rapidly with the number of predictors
connected to the class variable.

We can bypass this obstacle by constructing mixtures of di-
agnostic networks, where each individual network has only a
small number of arcs from the predictors to the predicted vari-
able. The relevant predictor sets of each network can be over-
lapping or non-overlapping. For more on diagnostic structures,
see [7]. Fig. 9(b) shows an example of two diagnostic struc-
tures of this type. Consequently, the result is a finite mixture of
several diagnostic Bayesian network classifiers, where the in-
dividual predictions made by the models BS ∈ B are weighted
by the supervised marginal likelihood (9).

4.5. Discretization

Since most of our variables are continuous, we need to dis-
cretize them in order to be able to compute the marginal likeli-
hood in closed form.

Formally, we define discretization as the process of finding
a mapping d : Ri → Di, where Ri is the range of variable Vi,
and Di = {0, 1, 2, . . . , K − 1} is the set of K discrete values
we map the original values of variable Vi to. The process of
discretization consists of finding a set of K−1 threshold values
Ti = (ti,1, . . . , ti,K−1), ti,j ≤ ti,j+1.

An original value vi,j of variable Vi is then mapped to Di as



Fig. 9. Examples of Bayesian network structures. (a) A sampling type Bayesian network structure, with partitioning of predictor space.
(b) Two examples of diagnostic Bayesian networks with overlapping relevant predictor subsets of size 3.
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(b)

follows:

d(vi,j) =







0 if vi,j ≤ ti,1.
i if ti,k−1 < vi,j ≤ ti,k.
K − 1 if vi,j > ti,K−1.

Whereas in our empirical work we have taken a fully data-
oriented approach, biological knowledge could be employed
in the determination of the threshold values, since the qualita-
tive categories of say 0+ parr density should be assessable by
experts. In our empirical studies, we have employed two dis-
tinct types of discretization: context-independent and context-
dependent mappings. The difference between these two types
of methods is that in context-dependent methods we take val-
ues of other variables into account when searching for the thresh-
old values.

4.5.1. Context-independent mappings
In context-independent discretization we study in isolation

the values of the continuous variable to be discretized. We have
used two different kinds of context-independent mapping in
the empirical studies reported here: equal-width and K-means
discretization.

Equal-width discretization is a simple method, making little
or no use of the data itself. We simply split the range of the
attribute into K parts of identical size.

Example 4.5. Let L>0+
i−1

, the average length-class density of
> 0+ parr in the previous year, have values in the range
Ri = [0..9] in the data. If we use equal-width discretization
and K is 3, Ti = {3, 6}. Let our observed data be as shown
in Table 5(a). Our discretization maps it as shown in the lower
part of Table 5(a).

Equal-width discretization thus depends only on the range
of the variable. The range can be supplied as part of biological
knowledge or determined from the data.

K-means discretization finds the threshold values by an iter-
ative process. K − 1 division points are first placed within Ri,
defining subsets of values. The following procedure is then re-
peated n times:

1. The means of each subset are calculated.

2. The new division points are put at the exact midpoints
between successive means.

3. The values are dealt out into the new subsets defined by
the new division points, in order.

The initial division points can be set in various ways. The
procedure we used in our empirical studies was the following:
the values of Vi that occurred in the data were first ordered, and
then split, in order, into K disjoint subsets of equal size (i.e.
each subset has bri/Kc elements). If ri is not exactly divisible
by K, we make the first ri − K subsets one member larger.
The end result of this iterative process is our set of threshold
values Ti. We have used n = 5 in our empirical studies.

Example 4.6. Let our observed data and K be as in exam-
ple 4.5. Initially our disjoint subsets are {0, 0.1}, {0.3} and
{8}. The means of these subsets are [0.05, 0.3, 8]. Our first di-
vision points are [0.175, 4.15]. The value subsets defined by
these split points equal our initial subsets, so the process has
converged already. Our discretization of the original values is
shown in the lower part of Table 5(a).

To compare these two techniques, note that whereas equal-
width discretization only depends on the range of Vi, K-means
takes into account the distribution of the values of Vi in the
data: regions more densely packed with values get more densely
packed threshold values.

In our empirical studies, we performed both kinds of dis-
cretization based on the training data alone, again in order
to avoid information leakage from the validation data to the
model learner.

4.5.2. Context-dependent mappings

In context-dependent discretizations the values of other vari-
ables co-occurring in data vectors are taken into account. Since
our goal is focused prediction of variable Y , we take the val-
ues of Y in each data vector as our context when discretizing
Xi: i.e. we seek for such a set of threshold values that the val-
ues within each discrete category have as similar a context as
possible.

When searching for Ti we need a metric M(Ti,D) to tell
us when to insert a threshold value ti,j between two data val-
ues that occurred for variable Vi. If our metric satisfies a set of
technical requirements, especially the requirement of decom-
posability, we can find the metric-optimal Ti by dynamic pro-
gramming. Several metrics that meet these criteria have been
proposed in the literature. (See [10] for an overview).



Table 5. Examples 4.5, 4.6 and 4.7. (a) The observed data and the resulting discretizations, Ri = [0, 9]. (b) The scores of different
discretizations for K ∈ {2, 3} using M2pc(Ti, D).

L>0+

i−1 data 0 0.1 0.3 8
The corresponding value of Si few few many many

Equal-width, K = 3 0 0 0 2
K-means, K = 3 0 0 1 2
M2pc(Ti,D), K = 2 0 0 1 1

(a)

K Ti M2pc(Ti,D)

[0.05] 5.66296
2 [0.2] 4.68213

[4.15] 5.66296
[0.05, 0.2] 4.96981

3 [0.05, 4.15] 5.66296
[0.2, 4.15] 4.96981

(b)

In our empirical studies we have chosen to use an information-
theoretic metricM2pc(Ti,D) (the DL evaluation function of [10])

(11)

M2pc(Ti,D) =

log |Vi| + log

(

|Vi| − 1

K − 1

)

−

K
∑

j=1

log
Πrc

k=1
(γ · (γ + 1) · · · · · (γ + n(ck, j) − 1)

(rcγ) · (rcγ + 1) · · · · · (rcγ + nj − 1)
,

where |Vi| is the number of different values Vi has, rc is the
number of values our discretized focus of prediction has, j
goes over all K categories of our discretization, nj is the num-
ber of original values assigned to category j, and n(ck, j) is
the number of times context ck (predicted variable’s value) oc-
curs within that category, i.e. the number of times the original
values assigned to discrete category j occur in context ck in D.
The predicted variable needs to be discretized first, if it is con-
tinuous. We did this by K-means discretization in our empirical
studies. γ is a prior on the occurrences of contexts within each
category. We have used γ = 1 at all times, i.e. we pretend to
having observed one occurrence of each context prior to look-
ing at D, the actual observations.

In information-theoretic terms, this metric calculates the cost
of using a two-part code as an encoding of the discretization
(see e.g. [4] for more on two-part codes). Intuitively speaking,
we first encode the number of different original values Vi has,
which can be done with cost log |Vi|. Then the positions of
K−1 split points from among the |Vi|−1 possible candidates
are added to the code. Finally, we encode the distributions of
contexts within each category, using sampling with replace-
ment as our model. It should be kept in mind that our aim is to
minimize M2pc(Ti,D).

Note especially that this discretization method allows au-
tomatic determination of a metric-optimal K. In our empiri-
cal studies, we let the method determine the optimal K within
range [2, 10].

Example 4.7. Let our observed data and K be as in exam-
ple 4.5. We search over all possible discretizations, letting the
number of categories K be either 2 or 3. Table 5(b) shows
the scores. You can see that the context makes the metric pre-
fer (i.e. give smaller scores to) discretizations which make the
resulting categories internally as homogeneous with respect to
context (value of Si) as possible, i.e. discretizations with a split

point between original values 0.1 and 0.3 are preferred. Of
these, the one with only two categories (K = 2) is preferred
over the three-category case, since the splitting of the second
category is superfluous according to the metric, adding unnec-
essary complexity. Our discretization of the original values is
shown in Table 5(a).

4.6. The loss function
Since, from the point of view of decision making, an im-

portant goal in the analysis of wild salmon populations is the
maintaining of biodiversity, we should be conservative in our
predictions: to err on the positive side (predicted value is greater
than the correct value) is more serious than erring on the nega-
tive side (predicted value is smaller than the correct value). In
other words, our loss function should be asymmetric.

We have used loss functions of the following type:

(12) L(yp, yc) = |yp − yc|
α,

where yp is our prediction, yc is the correct value, and α con-
trols the steepness of our penalization for error. For the goal of
biodiversity maintenance, we used an asymmetric loss function

(13) Lasymm(yp, yc) =

{

|yp − yc|
α1 if yp > yc,

|yp − yc|
α2 otherwise.

That is, we employ a different error exponent for the cases
where our model is optimistic (α1) vs. pessimistic (α2). And
since we want to be conservative, α1 ≥ α2 always holds. To
summarize the loss of a series of predictions made in a valida-
tion set, we take the average of the losses of individual predic-
tions, i.e. a loss incurred by an erroneous prediction is treated
equally independently of the moment in time it occurs at.

Example 4.8. Let our focus of prediction be Si, and our loss
function be symmetrical absolute difference, i.e. α1 = 1 and
α2 = 1. We are searching for the best predictive Bayesian
network structure using an empirical criterion. We have a set
of “second-order” training data, and a set of test data to assess
the predictive performance of the models. At the moment we
have two structures to consider, BS1

and BS2
.

If a series of correct values for Si is [3000, 5000, 10000]and
model BS1

is optimistic and predicts [7000, 6000, 10000], our
loss is on average (4000+1000+0)/3 = 1670. Model BS2

on
the other hand is pessimistic and predicts [1000, 2500, 8500],



incurring average loss (2000 + 2500 + 1500)/3 = 2000.
Hence, the optimistic model is preferred. Note that whereas
BS2

always errs, its errors seem to be bounded. On the other
hand BS1

only makes one serious error, but that error results
in gross overestimation.

Let now α1 = 2, i.e. we penalize for optimistic predictions.
With the same correct values and predictions our average loss
is now (40002+10002+0)/3 = 5666666.67 for BS1

, whereas
for BS2

the loss is (2000 + 2500 + 1500)/3 = 2000 as ear-
lier, i.e. using the optimistic model incurs nearly 3000 times as
much loss as using the pessimistic model now.

We can visualize the different nature of predictive models as
shown in Fig. 10, where the x axis shows the correct values
and the y axis the predictions of the models in question.

In the case of the marginal likelihood criterion described ear-
lier, the loss function minimized is

(14) Llog(P, yc) = − log P (yc),

where P (Y ) is the predictive distribution. Intuitively speaking,
marginal likelihood seeks for the model whose predictive dis-
tribution is the “closest” one to a “correct” one. The advantage
of an empirical search criterion is that an arbitrary loss function
different from Llog(P, yc) can be used already in the model se-
lection phase, although a consequence is that the model selec-
tion procedure does not lie within the Bayesian framework any
more.

5. Empirical results

In the following we describe the results of building pre-
dictive models for rivers Byske, Kalix, Ljungan, Lögde, Öre,
Råne, the Swedish side of river Tornio and Vindel, learning
our models from the combined data available for rivers Simo
and Tornio (the Finnish side). Our data for river Simo and the
Finnish side of river Tornio consist of time series of 17 and
15 years of data, respectively. At the highest level we split our
results into three classes:

• The results of learning, for each of the Swedish rivers,
a predictive model for smolt production from the com-
bined data for rivers Simo and Tornio (the Finnish side).

• The results of learning a predictive model for the density
of > 0+ parr from the combined data for rivers Simo
and Tornio (the Finnish side).

• The results of learning a predictive model for the density
of > 0+ parr from the data for one side of river Tornio,
validating the model by the data for the other side.

The predictor variables of each model are the maximal in-
tersection of the available predictors for the predicted river and
those available for rivers Simo and Tornio. (See Table 1).

The first type of results provide a time series of predictions
over all of the available history for each of the Swedish rivers.

While the results of the first type are impossible to validate
empirically, the second approach learns validatable models for
density of older parr. The focus of prediction is the density of
> 0+ parr, since it is the closest stage to smoltification in the
life cycle of salmon. The aim of this study is to see whether

predictive models for the next-best population status indicator
are transferable from Simo and Tornio to the other rivers.

The third type of results aim at studying to some extent
whether the success of the transfer of knowledge from one
river to another depends on differences in the nature of the
rivers themselves as biological systems, or to differences in
the nature of the measurements available. We take data from
two sides of the same river, river Tornio, and learn predictive
models for density from the data for one side, validating the
resulting model by the data for the other side.

For each of these lines of study, we let the length of history
available to us extend to 5 years. Given a training data set and
a validation data set as described above, we proceeded in the
following fashion:

1. We split the domain to subdomains (where available) as
follows:

(a) Only densities as predictors.

(b) Only densities and abundance of adults as predic-
tors.

(c) Only densities and the reproduction index as pre-
dictors.

(d) All of the available data as predictors.

Furthermore, we compared using domain expert-given
density estimates to using average length-class densities,
whenever possible.

This domain splitting was done to study the dependency
of predictive performance on the amount and quality of
knowledge about the domain.

2. We tried each candidate from a set of model classes,
i.e. subsets of possible Bayesian network structures, to-
gether with a set of discretization schemes. The structure
types we tried were:

(a) Sampling-type structures, no variable selection.

(b) Sampling-type structures, with variable selection.

(c) Sampling-type structures, partitioning structure.

(d) Mixtures of diagnostic structures with 1 to 3 arcs
per component.

(e) Diagnostic structures of 1 to 3 arcs, with variable
selection.

Our arsenal of discretization methods was:

(a) Equal-width discretization with 2 to 5 categories.

(b) K-means discretization with 2 to 5 categories.

(c) M2pc(Ti,D), letting the method choose the opti-
mal number of categories from within the range
[2, 10].

3. Given a set of structures and a discretization scheme, we
sought for the structure describing the domain the best
via two criteria:

(a) The marginal likelihood criterion.



Fig. 10. Example 4.8. The points are predictions made by the model for a given correct value. The line depicts a perfect predictor, i.e.
predictions which are equal to the correct value. (a) BS1

, the optimistic model. (b) BS2
, the pessimistic model.
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(b) An empirical criterion, where the search was started
from an empty graph, proceeding as in Chapter 4.4.1.
Repeatedly, a random arc operation was picked,
either an addition or a removal. The training data
was then split randomly to 80% of “second-order”
training data and 20% of test data. The parame-
ters of the model were learned both prior and after
the operation from the second-order training data,
proceeding to measure the predictive performance
of the pre- and post-operation models on the test
data (the 20% part). To ensure the representative-
ness of the test set, the random splitting to a sec-
ond order training set and a test set was performed
50 times. If the performance was better after the
arc operation, the operation was performed, and a
new one picked randomly. The number of arc op-
erations tried for a particular second-order training
data–test data pair was 1000.

4. Given the resulting model, we measured its predictive
performance using Lasymm(yp, yc), with the symmetri-
cal case α1 = 1, and the optimism-penalizing one (α1 =
2). α2 = 1 always.

5.1. Normalization of data
Our first approach was to use the data as it is, but we soon

realized that the rivers have quite different magnitudes, mak-
ing transfer of knowledge using absolute values impossible.
A model trained on rivers Simo and Tornio would never have
seen the low numbers of a small Swedish river.

Hence we decided to normalize our data using

(15) Ni =
vi,j − µi

σi

where vi,j is an original value of variable Vi, µi is the empiri-
cal mean of Vi and σi is the empirical standard deviation of Vi.
Note that to stay absolutely honest, µi and σi have to be calcu-
lated from the training data alone. Otherwise they will provide
quite a lot of information about the validation set, given our
scanty data. Also, if an empirical criterion is used, the nor-
malization parameters have to be determined from the second-
order training data as well.

Normalization produces a model that only speaks of things
in relative terms, but note that we can always translate the pre-
dictions of our model back to absolute values, provided we
obtain µi and σi somehow. They need not be determined em-
pirically: given a river with no data on smolt production a bi-
ologist or fishery scientist can hypothesize about the mean and
standard deviation of the focus of prediction, plug the values in
and see the absolute values. Most importantly, from the man-
agerial point of view, relative values suffice for the qualitative
analysis of changes in the population over time.

5.2. Presentation of results
Since our results indicated that in the sampling paradigm

variable selection usually paid off, and on the other hand the
partitioning networks as well as diagnostic structures of more
than one arc performed poorly (most likely due to the small
size of the data set, leading to drastic overparameterization
when using these model classes), and one-arc diagnostic struc-
tures were too impoverished to possess predictive potential, we
present only the results obtained in the sampling paradigm us-
ing variable selection.

5.3. Predictions of wild smolt production for Swedish
rivers

We present here the results of predicting the wild smolt pro-
duction of Swedish rivers Byske, Kalix, Ljungan, Lögde, Öre,



Råne and Vindel, training the model on the combined data for
rivers Simo and Tornio. We study the effect of using three dif-
ferent sets of predictors:

• Only densities.

• Densities with adult abundance data.

• Densities with the reproduction index.

When possible, we also compared the results obtained with do-
main expert-given densities to those obtained using our own
average length-class densities.

A fundamental problem here is that we have no empirical
means of validating our models. The results shown here are
those given by models learned using marginal likelihood as the
search criterion, with M2pc(Ti,D) as the discretization.

Fig. 11 shows the set of structures used in the predictions.
The most striking feature is that the average length-class densi-
ties do not get picked at all. Of the estimated densities only the
densities of older parr in the previous year and five years back
are chosen, and both are considered relatively weakly relevant.
More evidence is provided for the abundance and reproduction
index variables. In the case of adult abundance the same pattern
repeats: the previous year and the situation five years earlier are
the most relevant variables. When using reproduction indices,
the history is weighed somewhat differently: years i − 2 and
i − 4 get more weight.

The predictions made using the structure of Fig. 11(a) (expert-
estimated densities) are shown in Fig. 12. Fig. 13 exhibits the
results of predicting using the structure of Fig. 11(c). Finally,
Fig. 14 shows the predictions of the structure of Fig. 11(e) for
the two rivers we have M74 data for, Ljungan and Vindel. The
overall impression is that using only density estimates provides
quite flat predictions, with notably increased fluctuation when
adult abundances or reproduction indices are added to the pre-
dictor set. For example, river Vindel has “average” values pre-
dicted from 1988 onwards when using only estimated densities
as predictors. When the adult abundance indicators are added,
this changes to oscillation.

5.4. Predictions of densities for Swedish rivers
We present here the results of predicting either estimated or

length-class densities of > 0+ parr for Swedish rivers Byske,
Kalix, Ljungan, Lögde, Öre, Råne and Vindel, learning the
model from the combined data for rivers Simo and Tornio.

To have results comparable to those given in Chapter 5.3
the results shown here are those obtained using marginal like-
lihood as the search criterion.

Fig. 15 shows the best predictive results obtained with es-
timated densities over the set of discretizations for each river.
It can be seen that the transfer of knowledge fails for rivers
Kalix, Ljungan and Råne: even the best model fails to recog-
nize in the data for the predicted river any pattern familiar from
rivers Simo and Tornio . Even for the other rivers the results are
not spectacular, with Byske and Lögde showing the nicest be-
haviour.

Whereas the marginal likelihood criterion provided no ev-
idence for the relevance of average length-class densities for
smolt production, it seems that for the rivers with available
data, rivers Kalix, Öre and Vindel, they work at least as well for

the prediction of densities as the estimated densities, as shown
in Fig. 16. Naturally, the semantics of the focus of prediction
are slightly different: in Fig. 15 we predict the density of older
parr, in Fig. 16 the density of longer parr, but see Fig. 2 for the
close correspondence of the two variables. Especially notable
is that while predicting estimated densities failed completely
for river Kalix, predicting average length-class densities works
decently, even being capable of predicting a high value for a
correct high value, an otherwise quite rare occurrence.

5.5. Prediction of densities across river Tornio
Finally, we studied the scenario of building predictive mod-

els for average length-class density of “older than 0+” parr by
using the data from one side of the river as the training data,
validating on the data for the other side.

The aim of this exercise was to assess to some extent whether
difficulties in the transfer of knowledge are due to the differ-
ing natures of the rivers as biological systems, or to the differ-
ent natures of the measurements. Hence, we picked a situation
where the measured rivers are as similar as possible, being two
sides of the same river.

Both sides of river Tornio possess electrofishing data, mak-
ing this approach possible. A subset of the measured sites on
either side have a corresponding site on the opposite side in
the other data set. Hence, we studied separately the case of
using only data from sites which have a corresponding site at
the same location on the other side, and the case of using only
data for which there is no corresponding measurement from
the other side (the complement of the first case). The first case
is meant to be a study of maximally similar “rivers” where
the measurements are also maximally similar, while the sec-
ond case studies a more dissimilar case, where we drop the
maximal similarity of the measurements.

Fig. 17 shows the results of learning a model from the data
for the Finnish side, validating by the data for the Swedish side,
Fig. 18 the opposite situation. This time we show the results of
using an empirical model selection criterion.

A model learned from the data for the Finnish side of river
Tornio seems to have captured some transferable knowledge,
having a tendency to be pessimistic regardless of penalization
for pessimism in the model selection phase. In the reversed
case the model seems to be incapable of predicting for higher
densities, having a tendency for a steep positive correlation be-
tween correct and predicted values, until the “roof” of aver-
age values is hit. What comes to non-opposite sites, something
similar can be seen, but not as markedly. On the whole, the
results are markedly better than in the transfer of knowledge
from a river to a different river, however: even when the mod-
els underestimate for high correct values, there is a plausible
linear correlation in most cases. Yet, something seems to dif-
ferent about the measurements as well, if we assume that they
come from the same biological system.

6. Conclusions

We have defined and demonstrated a methodology for the
transfer of knowledge between biological systems. In our em-
pirical work we applied it to the transfer of knowledge across
the wild salmon rivers of the Gulf of Bothnia. Our goals were



Fig. 11. Learning a model from the combined data for rivers Simo and Tornio (the Finnish side). Sampling-type structure with variable
selection, structure search by marginal likelihood. Subdomains as predictors, history of five years. Structures with the highest marginal
likelihood over all discretizations. (a) - (b): Densities and abundances of adults. (a) Estimated densities. (b) Average length-class
densities. (c) - (d): Densities and abundances of adults. (c) Estimated densities. (d) Average length-class densities. (e) - (f): Densities and
reproduction index. (e) Estimated densities. (f) Average length-class densities.

��������	��
 �����������


� �

(a)

���

(b)

������������ � �	��� � ����� � ����� � �	�� ��������	��! � �	��!

" �

(c)

#%$�&(' #)$�&�* #%$�&�+ #)$�&�, #%$�&�-

. $

(d)

/�0�1�23�4�5 6%73	4�5 6%73	4�8 6%73�4�9 6%73�4�: /�0�1�23	4�; 6%73	4�;

< 3

(e)

=?>@�A(B =?>@�A�C =D>@�A�E =?>@�A�F =D>@	A�G

H @

(f)

managerial, aiming at generalizing models capable of adjust-
ing to the needs of fisheries management, while maintaining
good predictive performance for a chosen indicator of the sta-
tus of a population.

Our empirical results illustrated the performance of our method-
ology on real-world data. In the interest of unbiased evaluation,
our validation schemes were as strict as possible. Since in this
particular domain our prime choice of focus, the production of
wild smolts, cannot be validated empirically, we also studied
validatable predictive models for the density of > 0+ parr.

From the predictions of smolt production one objective ob-
servation can be made: adding data on adult abundance made
the predictions over a time series fluctuate more.

What comes to the transfer of knowledge in terms of the
prediction of density, for some rivers the procedure failed com-
pletely. None of the results showed good performance, although
for a few rivers the low end of the density range displayed rea-
sonable performance.

Looking at the performance of models learned from one side
of the same river, and validated by the other side, it could be
seen that the performance was noticeably better than in the
transfer of knowledge from a river to a different river. For
higher correct values the models tended to underestimate, how-

ever. This might well be due to the shortness of the time series
available: only twelve years of data.

A tentative conclusion is thus that any difficulties in the
transfer of knowledge are likely to be more due to the different
biological nature of the rivers than to the different nature of the
measurements.

In our empirical results we studied how informative the real-
world data sets we used are. If desired, biological knowledge
could also be made use of, e.g. in the choice of possible model
structures, in the determination of parameter priors or in the
choice of threshold values in the discretization. Another di-
rection for future work would be to utilize more complex loss
functions than the relatively simple asymmetrical loss function
used here. For example, the steepness of the penalization for
error could depend on the correct value, e.g. if the population
is actually “large”, errors are less serious than when the popu-
lation is on the verge of extinction.
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E. Jokikokko, S. Kuikka, A. Romakkaniemi, L. Karlsson, and
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Fig. 12. Times series of predictions for smolt production. The model was learned from the combined data for the rivers Simo and Tornio
(the Finnish side). Sampling-type structure with variable selection, structure search by marginal likelihood, discretized by M2pc(Ti,D).
Estimated densities as predictors, history of five years. (a) River Byske. (b) River Kalix. (c) River Ljungan. (d) River Lögde. (e) River
Öre. (f) River Råne. (g) River Vindel.

-1

-0.5

0

0.5

1

1980 1985 1990 1995 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(a)

-1

-0.5

0

0.5

1

1980 1985 1990 1995 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(b)

-1

-0.5

0

0.5

1

1984 1986 1988 1990 1992 1994 1996 1998 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(c)

-1

-0.5

0

0.5

1

1984 1986 1988 1990 1992 1994 1996 1998 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(d)

-1.5

-1

-0.5

0

0.5

1

1.5

1980 1985 1990 1995 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(e)

-1

-0.5

0

0.5

1

1984 1986 1988 1990 1992 1994 1996 1998 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(f)

-1.5

-1

-0.5

0

0.5

1

1.5

1975 1980 1985 1990 1995 2000

N
or

m
al

iz
ed

 p
re

di
ct

io
n

Time

Predicted relative smolt production

(g)



Fig. 13. Times series of predictions for smolt production. The model was learned from the combined data for the rivers Simo and Tornio
(the Finnish side). Sampling-type structure with variable selection, structure search by marginal likelihood, discretized by M2pc(Ti,D).
Estimated densities and adult abundances as predictors, history of five years. (a) River Byske. (b) River Kalix. (c) River Ljungan. (d)
River Lögde. (e) River Öre. (f) River Råne. (g) River Vindel.
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Fig. 14. Times series of predictions for smolt production. The model was learned from the combined data for the rivers Simo and Tornio
(the Finnish side). Sampling-type structure with variable selection, structure search by marginal likelihood, discretized by M2pc(Ti,D).
Estimated densities and the reproduction index Rn

i as predictors, history of five years. (a) River Ljungan. (b) River Vindel.
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Fig. 15. Predictions for > 0+ parr. The model was learned from the combined data for the rivers Simo and Tornio (the Finnish side).
Sampling-type structure with variable selection, structure search by marginal likelihood over different discretizations. The model with the
best predictive performance shown, α1 = 1. Estimated densities as predictors, history of five years. (a) River Byske. (b) River Kalix. (c)
River Ljungan. (d) River Lögde. (e) River Öre. (f) River Råne. (g) River Vindel.
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Fig. 16. Predictions for > 0+ parr. The model was learned from the combined data for the rivers Simo and Tornio (the Finnish side).
Sampling-type structure with variable selection, structure search by marginal likelihood over different discretizations. The model with the
best predictive performance shown, α1 = 1. Average length-class densities as predictors, history of five years. (a) River Kalix. (b) River
Öre. (c) River Vindel.
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Fig. 17. Predictions for > 0+ parr. The model was learned from the electrofishing data for one side of river Tornio. Sampling-type
structure with variable selection. Structure search by an empirical criterion over different discretizations. Average length-class densities as
predictors. Structure with the best predictive performance using α1 = 1 shown. Learning from the data for the Finnish side, validating by
the Swedish side. (a) - (b): Only data for electrofishing sites at opposite sides of the river. (a) α1 = 1. (b) α1 = 2. (c) - (d): Only data
for non-opposite electrofishing sites. (c) α1 = 1. (d) α1 = 2.
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Fig. 18. Predictions for > 0+ parr. The model was learned from the electrofishing data for one side of river Tornio. Sampling-type
structure with variable selection. Structure search by an empirical criterion over different discretizations. Average length-class densities as
predictors. Structure with the best predictive performance using α1 = 1 shown. Learning from the data for the Swedish side, validating
by the Finnish side. (a) - (b): Only data for electrofishing sites at opposite sides of the river. (a) α1 = 1. (b) α1 = 2. (c) - (d): Only data
for non-opposite electrofishing sites. (c) α1 = 1. (d) α1 = 2.
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