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Predicting the wild salmon production using Bayesian
networks

Kimmo Valtonen, Tommi Mononen, Petri Myllymaki, Henry Tirri, Jaakko Erkinaro, Erkki
Jokikokko, Sakari Kuikka, Atso Romakkaniemi, Lars Karlsson, and Ingemar Pera

Abstract: From the management point of view, the production of wild smolts is the most important indicator of the status
of a river’'s salmon population. We present a methodology allowing the prediction of the number of wild smolts in a

river in a consistent and well-defined fashion. Our framework is probabilistic and our approach Bayesian. Our models are
Bayesian networks, which have a simple graphical representation allowing visualization of the obtained knowledge. Being
the state-of-the-art classifier in many domains, they also possess predictive power. We emphasize empirical modeling,
studying what can be learned from the existing real-world data for two Gulf of Bothnia rivers, Simo and Tornio (the
Finnish side). To ensure that our models generalize well, we employ strict validation procedures, where care is taken
to inhibit leakage of information from the validation set to the training set. Furthermore, with the needs of fisheries
management in mind, we highlight the role of the loss function in modeling, evaluating our models also in a setting where
it is a greater error to over- than underestimate the size of a population.

1. Introduction This report is structured as follows. We first outline our ap-
The main aoal of salmon fisheries management is to maxiproach to modeling in Chapter 2, proceeding to describe our
9 9 real-world data sets in detail in Chapter 3. In Chapter 4 we

mize the level of fishing, while maintaining a stock of sufficient | L . -
size and genetic diversity. A method for assessing and predicE—eflne our methodology formally, giving examples of its appli

; L S ation in fisheries. The results of our empirical work are de-
ing the status of a river's salmon population is needed to tacklg ;e 4 iy chapter 5. Finally, we summarize our conclusions
this task. The aim of this paper is to exhibit such a methodolin Chapter 6 '
ogy. '

We limit ourselves to the nursery river phase in the life cycle

of salmon. We divide this phase into three stages: 2. Modeling approach

To be able to handle uncertainty in a consistent and well-

S, ¢ X ol
depends on the abundance of ascending adults and th(gﬁf'ned fashion, we adopt the probabilistic framework, and

success in spawning, affected by environmental factor§'100S€ the Bayesian appr_oach within_it, with BaVeSia.” net-
such as the M74 synélrome works [9] as our model family. Our goal is to learn a predictive

model for wild smolt production based on the available data,
2. The parr stage. This is the period lasting from one ugusing different criteria for model selection. Our emphasis is on
to as many as six years, during which the egg-emergeg@mpirical modeling: although our methodology allows the ex-
juvenile salmon stay in the river. pression of biological knowledge, in this paper we obtain our

. ] ] models from the existing data alone. The results should thus be

3. The smolt stage. Having undergone physiological chang&sen as a baseline to compare biological knowledge to, as well

young salmon migrate downstream to the sea. as an assessment of the amount of information in the available

From the managerial point of view, the smolt stage is thedata from the point of view of smolt production prediction.

most important one: the number of wild smolts is the yardstick ©Ur Pointof view is managerial: the resulting models should
of choice for determining the status of a river's wild salmon generalize well, and be capable of taking into account the needs

population. Hence, in this work we focus on it, and developOf fisheries management. By this we mean that our goal is to

models for the prediction of wild smolt production, using real- INd models that predict well in the future. The main problem

world data from two Gulf of Bothnia rivers. Simo and Tornio. N learning predictive models is to avoid overfitting, i.e. the sit-
' " uation where we fit our model too accurately to the available

data, compromising our predictive performance for future data.
To test whether we have succeeded in generalizing, we vali-
Kimmo Valtonen, Tommi Mononen, Petri Myllym aki, and Henry - date our models using strict procedures, where pains are taken
Tirri. Complex Systems Computation Group (CoSCo), Helsinkitg ensyre that the model learner is never allowed to gain infor-
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1. The reproduction stage. The output of this stage, egg
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but keeping in mind the aims of fisheries management we als®he lowest level is not directly useful for the main problem

study the difference between a situation where it does not matere, since we are not interested in modeling a single fish. On

ter whether we over- or underestimate, and the more realistithe other hand, this type of data contains exact measurements

situation where we prefer a pessimistic model, i.e. one whossuch as length and weight instead of estimates. It also con-

errors tend to be underestimates rather than overestimates. tains a relatively large number of samples (many thousands).
An important observation is that this data is highly valuable

3. Real-world data sets in the sense that it can be used to classify fish based on their
length.

Our empirical studies use data from two Gulf of Bothnia Ir?fact, the data at the intermediate level are just a summing
rivers, Simo and Tornio. The data sets are limited to the rivegp of the lowest-level data, augmented by data on fishing runs
phase in the life cycle of salmon. The reproduction stage ishat caught no fish. Therefore we created our own version of
covered by data on ascending adults and the M74 syndromgtermediate (fishing run) level data directly from the low-level
The parr stage is described by electrofishing data, and the smejata, adding to the result the unsuccessful fishing runs to avoid
stage by data on smoltification age and the number of seaboupsitive bias.
wild smolts. In this study we have studied wild salmon only.  Because our aim is to have a model transferable from Simo
Table 1 provides an overview of our set of variables and theifo Tornio and vice versa, we take all this site-specific data and

availability per river. summarize it for each year in terms of densities per age class.

We will now elaborate on our variables in some detail, goingA model containing the sites themselves as random variables
through the various life stages in order. could naturally not be applied to a river with a different set

of sites. We have adopted and compared two ways of obtain-

3.1. Reproduction stage data ing age-class density estimates. The first one is based on esti-

énation by domain experts using an electorfishing model, the

The earliest stage in the life cycle of salmon, the egg stage, "
depends both on the abundance of ascending adults and 8ﬁcond one on average observed densities per length class.

spawning success. Neither of the two rivers contains a fish lad-
der, so the only available means of measuring the abundanée2.1. Estimation by an electrofishing model
of ascending adults is via catches of adults in the river. Both The electrofishing data provides us with ready-made den-
the sum of weights and the number of fish are available fosity estimates for age group8+" and “> 0+". Actually, for
each year. We will denote catches in numbers at y&grC? river Tornio we possess a finer-grained division@e-", “ 1+”
and catches in kilos bg’¥. Unfortunately we lack data on the and”> 1+”". Since we want to compare the results of using
fishing effort, which makes this data a somewhat uncertain inthe data of either Simo or Tornio, or of both, we are forced to
dicator of abundance. employ the coarser division. We will uﬁ’* andEi>O+ to de-
To take spawning success and environmental factors into agote the expert-estimated density at yeaf age0+ and older
count to some degree, we also use data on M74 mortality (ithan0-+ parr respectively.
percentages) at yeardenoted by\/;. These estimates are derived by domain experts using an elec-
As an attempt at a synthetic variable characterizing reprotrofishing model where the actual amount of fish at a site is es-
duction as a whole, we created “M74-affected” versions of thdimated using measurements from a series of fishing runs. The
adult abundance variables, describing the estimated effect #fain assumption is that the catchability of the fish stays con-
M74 on reproduction. The values of these new variaitgs ~ stant across the series. It is also assumed that the age of the
and R¥ (reproduction in numbers and kilos, respectively) arefish can be determined reliably (but actually this information
catches multiplied byl — 1;/100). is often missing).

3.2. Parr stage data 3.2.2. Average length-class densities

For each year in our time series we have electrofishing data '° have a point of comparison, we decided to provide an al-

from a subset of the total set of electrofishing sites in the rivert€'native, more data-oriented way of estimating yearly density

The yearly choices of sites and their number vary over timefor each disjoint _Class of fish. An important point to note is
especially in the beginning of our time series. See Fig. 1 fOLthat our assumptions are somewhat weaker than those adopted

the variance in the yearly locations of electrofishing sites. " the estimates of the domain experts’ electrofishing model.

Our data set comprises electrofishing data at three levels: During electrofishing, usually more than one fishing run is
performed. However, the overall number of such runs, per-

1. The low level, where each record describes a single informed consecutively at the same site on the same day, varies.
dividual fish caught by electrofishing. The most common number of runs is three, but sometimes
there are fewer runs. Thus, we chose to always use the first
2. The intermediate level, where each record describes @in only, to have comparable data for all of the rivers. By tak-
single fishing run. That is, as electrofishing is carried outing the first fishing runs only, we weaken the assumption of
in 1 - 3 separate runs, we have a record for each of theonstant catchability made in the domain expert estimates. We
individual runs at a specific site. only assume the catchability of fish during the first fishing run
. . to be the same as that of any first fishing run.
3. The high level, where each record summarizes the elec- a5 ohserved above, we have ready-made ages for the fish
trofishing data for an entire river for a single year. in the data, but for part of the data the age is missing. As an



Table 1. An overview of the variables. “*” signifies availability.

Stage Variable group Variable Symbol || Simo | Tornio
Catch Catch in kilos CcF * *
Reproduction Catch in numbers cr * *
M74 M74 mortality M; * *
Reproduction in kilos RY * *
M74-affected catch Reproduction in numbers Ry * *
Average density 0+ (det. by length) L)+ * *
Average length-class densitigs Average density 1+ (det. by length) * *
Average density 2+ (det. by length) * *
Parr Average density>0+ (det. by length) L7oF * *
Estimated density 0+ E’T * *
Estimated densities Estimated density-0+ EZOF * *
Estimated density 1+ *
Estimated density-1+ *
% wild salmon smoltifying at age 1 Aj * *
% wild salmon smoltifying at age 2 A2 * *
Smoltification age % wild salmon smoltifying at age 3 A3 * *
Smolt % wild salmon smoltifying at age 4 A? * *
% wild salmon smoltifying at age 5 A? * *
Estimated number of seabound wild smolfs,
Smolt production based on mark-recapture data Si * *

alternative approach, we drop this assumption, and classify ther much of the range — only the low end of the range is well
fish in another disjoint and exhaustive way: by their length. covered.

We use 7 and 11 cm as the split points, i.e. all fish smaller
than 7 cm were considered to be, all fish longer than 11cm 3.3 Smolt stage data

2+, and "_’ll_” otherﬁ+. Thhese split poin(;cs wer:e detef”ﬁinlef' BY " The smolt stage is characterized in two ways in our data. The
experts. To see how they correspond to the empirical lengt ge distribution of smolts has been estimated by experts, based
distributions of age-c_lassmed _flsh in our data sets, see Fig. n.samples from trapped seabound fish. Unfortunately, we only
Note that the plot for river Tornio also shows how under—represmv@e%this data in an age-classified form. It would ha’ve been
0+ fish are in the aged subset of data for river Tornio, due tGfnteresting to compare age-classified data to length-classified

missing age labels for small fish. S . N i
Given these observed densities from first fishing runs forfish oo &8 We did in the case of parr density estimation. We de

of certainlengthclass, we assume that the first fishing runs ard'ote bij the percentage at yeaof wild salmon smoltifying
comparable across the sites sampled during a year, and take ﬁlte?gej'
average of the observed densities as our estimate of the density! '€ Values oiS;, the number of seabound smolts at year
for that length class during that year. We assume here that tHi consist of domain expert estimates based on mark-recapture
bias in the selection of sites to electrofish stays constant acro ata.

our time series. The veracity of this assumption in this data sei

was studied by us in [11], where it was seen to hold quite well4- Methodology

We will use L;"* and ;" to denote the average density at  Adopting the probabilistic framework, we assume our mod-

yeari of length-clas$)+ and longer parr respectively. els to be probability distributions. Since we are in this work
_ o interested in finding a model that predicts well for a particular
3.2.3. Comparison of estimation methods variable, our task is somewhat different from the general goal

The biological knowledge -incorporating electrofishing modeif modeling the joint distribution of all variables describing a
used by domain experts is more sophisticated than the lengthiver’s salmon population.
class approach put forth here. The length-class method should
be viewed as a data-based baseline: any system with strongern. The focused prediction problem
assumptions should at the least be able to beat it in the predic- cassificatiormeans the task of predicting the value of a dis-
tive sense. _ _ crete class variable, given the values of other variables, called
Fig. 3 and Fig. 4 compare expert estimates with length-clasgegictors In classifier learning the goal is to build accurate
estimates. It can be seen that for river Simo there is a plausiblgssifiers given a sample of classified instances, i.e. vectors

linear correlation between the two estimates, whereas for rivefonsisting of the values of the predictors together with the cor-
Tornio only the plot for> 0+ parr exhibits such tendencies. responding value for the class variable.

It has to be kept in mind that we have no or very little data



Fig. 1. The yearly locations of electrofished sites. (a) River Tornio (the Finnish side). (b) River Simo.
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Fig. 2. The empirical length distributions of fish aged in the data. (a) River Tornio (the Finnish side). (b) River Simo.
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In this work, our predicted variable is in fact not discrete, not constrain us in any way. In general formal terms, our aim
but continuous, and, properly speaking, we are do@uges- is to produce the predictive distributidn(Y | Xy,..., X).
sion We transform the regression problem to a classification
problem by discretizing the predicted variable and interpret-
ing our posterior to be a continuous histogram distribution.

Our point estimate will then be the expected value of this his-
togram. Hence, we can ueused predictioas a general term
covering both cases.

In learning a focused predictor, the goal is to build accu-
rate predictors from a givetnaining data seD = (xV,y"),

a matrix of N vectors each consisting of valuessofpredic-
tor variablesXy, ..., X,,, together with a value for the pre-
dicted variableY. Together, our variables form thdomain

Since our particular task in this work is to predict the wild
salmon production in a river using all available information,
our focus is onS;, the number of smolts at year Further-
more, we aim at building a model that allows us to predict for
. . a particular yeat given the past, that is, data from years pre-
e 7 e e e oo ey or GG DU ot o v el AS we are consiraned 9

' the nursery river phase, we cannot look more than five years

n?etzd:(r:]tg:%;T;gg?:;(ngl&pgfgzeiggsr\]/S«ZVII Ovr\llgvgi;:srzltjir;eet&eback in time, since we assume that after six years all juvenile
pred : L " . salmon have left the river. Putting all this together, the predic-
continuous variables in our data sets, so this assumption doés



Fig. 3. Comparison of density estimates made by domain experts to average length-class estimates, river Simo. Each point is a pair of
corresponding estimates for a year. (&) parr. (b) Older parr.
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tive distribution we are aiming at is Example 4.1. Let our domain be
k k 0 0 3
P(SZ | Cinfl’Cithi*l’RglflvRifl’Eij_DEi—l-‘r? V= {Sivcf—3aMi—27E?j2aEi>—Ol+
LO-‘r L>0+ Al AQ A3 A4 A5 . . .
i—i—1 A A A1y A1, A1, i.e. each data vector consists of an estimate of the number of
3 k k : H .
(1) Si1,...,CM .. C* . M;,_5,R* . RN . smolts at yea, catches in numbers three years earlier, M74
0b 504 104 7504 41 ) 3 percentages two years earlier, domain expert estimates of the
B By L5, L5, A5, A5, A5, densities o)+ parr two years back and domain expert esti-
Ad JAY L Sis) mates of the densities of older parr in the previous year.
i—59 41j—5y21-5)-

Let Fig. 5(b) present graphically a structuBs, € B de-

4.2. Bayesian networks scribing the domain. Given Fig. 5(b), our joint distribution can
" be written down as

Taking the Bayesian approach within the probabilistic frame-

work, we choose Bayesian netwotkas our model family. P(S;,Cl 5, Mo, E)Y, EZOT) =

Bayesian networks [9] define joint probability distributions via P(CT ) P(M;_»)

a set of independence assumptiéhsthat can be conveniently =3 o

expressed as a directed acyclic graph (see Fig. 5(a)). - P(EY, | CF g, M;_o)P(E7YT | EJT)
The nodes of the directed acyclic graph correspond to vari- - P(S; | B, EZOH).

ables, while the arcs represent the independence assumptions.
That is, whenever an arc is missing, we assume the two varii 3. Model selection criteria
ables in question to be pairwise conditionally independent. ) .

The model familiesB we consider thus consist of a finite ~ Given a data seb and a set of possible Bayesian network

number of probabilistic Bayesian network structures structuresB, we are faced with the task of selecting a model
structure from our set of candidates. Our aim is to find the
B ={Bs,,...,Bsq} model (structure) that describes the domain the best, having
One of the key properties of Bayesian networks is that the joinf€€n & set of observatiofsfrom it. In this work we use two
probability distribution can be factorized as follows: different selection criteria, one a purely Bayesian one, the other
an empirical one with advantages which will become clearer in

m—+1
Chapter 4.6.
@  P(Xio, X V)= [ PG| T, P
1_':1 _ . 4.3.1. The marginal likelihood criterion
wherell; denotes thgarents(immediate predecessors inthe  gjen a training seD it is possible, with certain technical

graph) of variableV;. The parameter8e of a Bayesian net-  55qumptions (see [5]), to compute the predictive distribution
work model determine the local conditional probability distri- ¢, 5 single Bayesian network structubg via

butionsP(V; | I1;). This means that a Bayesian network struc-
ture Bg, together withBg, defines a joint probability distribu- P(Xy,...,X,,Y | Bs,D) =

tion P(X1,...,Xm,Y | Bs, Bo) via (2).
3) /P(Xl,...,Xm,Y | Bs, Be. D)

LFor an interactive tutorial on Bayesian networks and links to reference mate-
rial, see sitdittp://b-course.hiit.fi. : P(B@ ‘ Bs, D)dB@)'




Fig. 4. Comparison of density estimates made by domain experts to average length-class estimates, river Tornio (Finnish side). Each
point is a pair of corresponding estimates for a year.0tg)parr. (b) Older parr.
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Fig. 5. (a) An example of a Bayesian network representing the joint distribuovi, V2, V3) as P(V1)P(V2|V1)P(Vs|V1, V2). (b) The

structureBs, of Example 4.1.

v v (i —)

@) (b)

If we now, instead of using only a single model structure, averhood can be calculated in closed form:
age over all Bayesian network structufgs € 5 in our model

family, we get (6) P(D|Bs,B)=
m+1 q; T
D(N/., + Nijr)
1] J
4  P(X1,...,Xn,Y |D,B) = Hll_[1 o7 +NZJ)H T,
7 J 1
> P(Xi,...,Xm,Y | Bs,D)P(Bs | D,B), o
Bach wherel" denotes the gamma functiap,is the number of value

combinations for parents of variablg, r; is the number of

where the first term was given in (3). The second term is theyalues variableV; has, N, are the sufficient statistics (the
posterior probability o3 after seeing the da. Intuitively, ~"UMPer of cases in the data where varialdearents’ values
if one wants to choose a single model fréyit makes senseto  2'¢ in configuration (value comblnatlom)when the van/able
select the model maximizing this posterior since that particulaltself has value), /NU > k= Nig and N, 1 NVije-
model has the highest overall weight in sum (4). Assuming the The constantV;;, are thehyperparameterdetermmlng the
prior P(Bg | B) to be uniform, this is equivalent to choosing parameter prior dIStrlbutlonP(B@ | Bg,B). Following the
the model with the highesbarginal likelihoodP(D | Bs, B), suggesnon in [1], in our empirical work we have picked the
since prior
N/

!
()  P(Bs|D,B)x P(D | Bs,B)P(Bs | B). @ ik =
as our parameter prior, with the settilg = 1. Intuitively

With certain technical assumptions [5], the marginal likeli- put this means that we deem that all states of the conditional



distribution of a variable given its parents are a priori equallya training data set. The predictive performance of the resulting
likely. This prior is also overridden by data relatively fadf’(  model is then measured in the test set in terms of the loss func-
is relatively small). Our reasons are twofold. Firstly, since ourtion (see Chapter 4.6) adopted. In Chapter 4.4.1 we discuss the
domain comprises 65 predictors, and we seek among differenise of empirical criteria for structure search in more detail.
discretizations, it would be a formidable task for experts to as-

sess and specify the parameter priors for all possible structur@s4. Searching for the best structure

and discretizations. Secondly, the amount of data is relatively

small from the viewpoint of empirical moo_lell_ng: data sets Ofing structures, searching among all possible Bayesian network
15 and 17 vectors per river. Any strong prior is prone to OVerqrres is computationally too hard for practical purposes,
ride the data, whereas our aim in this paper is to see what calynecially in our domain where there are 65 predictors: the
be learned from the existing data alone. problem is NP-hard if a node can have more than one parent.

Example 4.2. Let our domain b = {S;, R? .}, i.e. each  Therefore, a natural approach is to linfitto a subset of all
data vector consists of the estimated number of smolts at ye#&0ssible structures. )
i and an index of reproduction in numbers five years earlier. ~ As discussed above, a Bayesian network model represents
Let us consider all possible Bayesian network structures irthe joint distributionP (X, .. ., X;,, ). From this joint dis-
this domain, i.e8 = {Bs,,Bs,, Bs,}, Where Bg, corre-  tribution we aim to extract the predictive distributidt(}" |
sponds to the assumption ths is independent oR” , and X1, .., Xm). We can distinguish two different approaches to
v.v., andBg, and Bs, are models where they are dependent.estimating the predictive distribution [2]: in tidéagnosticparadigm
Fig. 6 shows the set of structurés one tries to estimate the distribution directly, while in szen-
For simplicity of exposition, let us further assume that bothpling paradigm one estimates the distributid?(sXy, . . ., X, |
the number of smolts and the reproduction index have beel ) and P(Y'), from which the desired predictive distribution
discretized to only two categoriefew andmany:. can be computed by using the Bayes rule, which implies
LetD; consist of 20 years of data. The sufficient statistics of,
D, are shown in Tabley2(a). You can see that regardless of ihe® P IXy.. X))« P, X [V)PY).

Even using the criteria of the previous chapter for compar-

value of R}"_;, the relationship of eventsS;=few” and “S;=  |n visual terms, in the sampling paradigm all of the arcs con-

many” stays more or less the same. nected to the focus node are leaving arcs, in the diagnostic
We can now calculate the marginal likelihood of all struc- paradigm arriving arcs.

tures Bs € B using (6) and the prior (7). For example, While our approach here is general, biological knowledge

could be taken into consideration when choosing the set of can-

P(D1 |Bs,, B) = didate structures. We will now describe some means of search-
I'(3) (F(}1 +10) I'(;+ 2)) ing for good structures from within a subset of all possible
r(l+12 Il rl) structures in both paradigms.
1 1 1
) 11(5) (F(4 -1‘r 8) ) I ;L 0)) 4.4.1. The sampling paradigm
I'(3+8) I'(3) I'(3) An example of a sampling-type Bayesian network is the

S Bl : ; aive Bayes model, a Bayesian network with one arc from the
The marginal likelihood of each structure is shown in Table 2(b iredicted node to each of the predictor nodes (see Fig. 7). This

It can be seen that the structure with no arc (dependency) i h struct ts th tion that th dict
slightly preferred, being 1.25 times more likely than the struc-9raph structure represents theé assumption that theé predictors

tures with an arc, and that the direction of the arc doesn't mat-2'€ Independent of each other, given the value of the predicted
ter in this case:Bg, and B, are equivalent with respect to variable. This assumption might sound naive, but the Naive

our criterion, given our prior and the data sB, (to see why BaYes classifier is in fact in many real-world cases the state-
this is S0, see [5]). of—the—a_rj[ clas_smer, as, for example, its success in p_rt_edlc_tlon
' competitions like the KDD Cup and the ColL competition il-

Let D> now be a similar data set of 20 years with the same

variables, but with different sufficient statistics as shown in Ta_lustrate. Naturally, often this independence assumption is more

ble 3(a). In other words, the sufficient statistics of the evenf’ less false. We can try to counter this deficiency by several

“R!' » = many” have been exchanged, making the sufficien eans. L . . .
statistics of “S;= few” and * S,= many” radically different One strategy isariable selectionin variable selection only

depending on the value &' . . Calculating the marginal like- variables which have a sufficient dependency from the focus of
i—5" it i ;

lihoods, we arrive at the results of Table 3(b), which show thapredlctlon are modeled as dependent on I. In grapr_ucal terms,

D, provides evidence for a dependency betweand R? ., we sgek fora subsgt of arcs frpm the predicted .var_lable to the

indicating a 263 times higher likelihood than the structure with predictors. To do this, we use either one of the criteria of Chap-

ter 4.3 to assess whether to draw an arc from the focus of pre-

no dependency. diction to a predictor.

4.3.2. Empirical criteria Example 4.3. Let our domain be
Another, non-Bayesian, way of scoring model structures is V= {Si,E?flyEiof,E?fQ,Eiof :

by using an empirical criterion, i.e. by comparing the predic-
tive performance of structure candidates ir_1 a test set. The pae. in addition to the focus of predictior;, we have density
rametersBe for a candidate structurBs are first learned from  estimates from the two previous years. As in earlier examples,



Fig. 6. B of Example 4.2.

Bg, Bg, Bg,

Table 2. Example 4.2. (a)V;; of Dy, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using dBia

— — marginal likelihood
R} s=few Rj 5= many B 6955 o=
S;=few 10 8 le 5:23 10~
S;= many 2 0 B52 593.10- 1
4 .

@) ®)

let all data be discretized to two categoridsy and many; be performed, and evaluate empirically whether it is likely to
The sufficient statistics of a data d8tconsisting of 20 years enhance predictive performance in the validation set. Note that
of data are shown in Table 4(a). the model must not see any of the validation set prior to the ac-
Let us pick marginal likelihood as our structure search cri- tual validation. Otherwise the empirical criterion will overfit to
terion. As in Example 4.2, let us use Buntine’s prior for ourthe validation set, providing misleadingly positive results. For
parameters. Because we have restricted our set of strucfires this reason, the predictive value of an arc operation has to be
to those in the Naive Bayes class, all arcs are of$he— X assessed by splitting randomly the training data to a “second-
type, whereX is any predictor. The marginal likelihood of order” training set and a test set. The two structures, prior and
each possible focus of prediction—predictor substructure, i.eafter the arc operation, are then both taught on the “second-
the score of not having vs. adding an arc is shown in Table 4(b)order” training set, and their performance assessed by predict-
We can see that it is 330 times more likely that there is ang for the test set. To avoid good or bad luck in the choice of
dependency betweéh and )+, than that there is notZ;” %" a split, this splitting is done a number of times, and the perfor-

is slightly on the independent sidg)*, more so, andz>%"is ~ Mance measured by a loss function (see Chapter 4.6).

shown to be 1.26 times more likely to be dependert;ahan We can also relax the independence assumption by other
not. means, e.g. by connecting highly relevant predictors via a fully

. i o . connected subnetwork. If we connect subsets of predictors fully,

An important practical feature of the marginal likelihood cri- \ve speak of aartitioning network (see Fig. 9(a)). A problem
terion is that if any node has at most one parent, the criteriofith this approach is that the number of parameters grows ex-
decomposes to subscores for each arc, i.e. we can evaluate fghentially with the sizes of the subsets. In our task, where we

gain or loss of adding an arc regardless of the rest of the stru¢rave a small amount of data, this is a major concern. See [7]
ture. This naturally makes searching in this restricted structurgyr more on partitioning networks.

space very efficient.

Example 4.4. Since no node has more than one parent in the4.4.2. The diagnostic paradigm

model class of example 4.3, we can express the varying evi- A major problem in the learning of diagnostic structures

dences for dependency between variables graphically by lefrom data is the number of parameters: the conditional distri-
ting the thickness of an arc indicate the amount of evidencéution of the focus variable given the predictors has a number
(marginal likelihood) for that particular arc. Because the range of parameters growing exponentially with the number of pre-

of values for the likelihood ratio can vary from 1 to thousandsdictors.

in practice, we take its logarithm to keep the result visually To see this, let us look at the case of using marginal like-
pleasing. Furthermore, if there is no arc from the focus of pre-lihood as our search criterion. First of all, in addition to the

diction S; to a predictor in the set of structures under con- previous definition of marginal likelihood, we can also define

sideration, that predictor has no effect on the predicted vari-the supervised (conditional) marginal likelihoas$

able. Thus, we can leave out such unconnected nodes from our NN

graph, arriving at Fig. 8 in our case. P(y™ |x7, Bs,B) =

In the case of an empirical criterion, the criterion is not sim-(9) /P(yN | xV, Bg, Be, B)
ilarly decomposable, so a search algorithm is needed. Since ‘
the number of possible structures can be huge, a randomized - P(Be | x", Bs,B) dBe,

search is a natural choice. In our empirical work we have usee)

) i ; ; ur motivation for this definition is that the unsupervised marginal
stochastic greedy search: we pick randomly an arc operation f

fkelihood criterion tends to favor models that model well both



Table 3. Example 4.2. (a)V;;» of Do, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using dBia.

R} ;=few R} ;=many = ma(r)g(l)r;al l'g?ll'l?md
;= few 10 0 51 e
7 —11
;= many 5 8 Bs, 5.23-10
- Bs, 5.23-107

@ ®)

Fig. 7. The Naive Bayes structure, i.e. the focus of predictiovisand P(Vi, Va, Vs, Va4, Vs, Vs) = P(V1)P(Va | Vi)P (Vs | Vi)P(Vy |
Vi)P(Vs | Vi)P(Vs | Vi) P(Vz | V).
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the predictors and the focus of prediction, which is clearly Formally, we define discretization as the process of finding
nonoptimal with respect to the focused prediction task. (See [3a mapping! : R; — D;, whereR; is the range of variabl§;,

6, 8]). andD; = {0,1,2,..., K — 1} is the set ofK discrete values
The supervised marginal likelihood (9) can be computed inve map the original values of variablé to. The process of
closed form similarly to (6): discretization consists of finding a set/f-1 threshold values
Ti= (tity- s tik—1) ti; <tiji1.
N N _ i 7,19 sy Ui, K—1)y big > Ui 41
P(y™ |x",Bs,B) = | An original valuev; ; of variableV; is then mapped t®; as
(10) lq—y[ L'(N}) ﬁ D(Njy, + Nix) follows:
j=1 F(Nj/ + N]) k=1 F(Nylk) . 0 if Vi, j S ti71.
whereg, is the number of value configurations for the predic- d(vij) = 41 !f tik—1 < Vij < tik.
tors X1, ..., X, ry is the number of value¥™ (the focus of K -1 ifv;>tix 1.

prediction) has)V;; are the sufficient statistics (the number of . .
cases in the data where the predictor values are in configura- YWhereas in our empirical work we have taken a fully data-
tion j andY has valuek), andN; = >°,% | Njy. N, is our oriented approach, biological knowledge could be employed

parameter prior as earlier in the determination of the threshold values, since the qualita-

Using (10) we can in principle calculate the supervised mardij§icategories of sag-+ parr density should be assessable by
likelihood of any diagnostic structure. The impracticality of the cXPErts. In our empirical studies, we have employed two dis-
procedure in a domain like ours (with 65 predictors) is evident,gnCt tyges of d|s_,cret|zar':|oré:_?fntext-mcti)ependera;]dcontext-
however:g, grows rapidly with the number of predictors con- €P€ndenmappings. The difference between these wo types
nected to the class variable. of methods is that in context-dependent methods we take val-

We can bypass this obstacle by constructing mixtures of diY€S of other variables into account when searching for the thresh-
Id values.

agnostic networks, where each individual network has only 2
small number of arcs from the predictors to the predicted vari- ) .
able. The relevant predictor sets of each network can be ovef-5.1. Context-independent mappings

lapping or non-overlapping. For more on diagnostic structures, In context-independent discretization we study in isolation
see [7]. Fig. 9(b) shows an example of two diagnostic structhe values of the continuous variable to be discretized. We have
tures of this type. Consequently, the result is a finite mixture ofised two different kinds of context-independent mapping in
several diagnostic Bayesian network classifiers, where the inthe empirical studies reported heegjual-widthandK-means
dividual predictions made by the modd¥s € B are weighted  discretization.

by the supervised marginal likelihood (9). Equal-width discretization is a simple method, making little
or no use of the data itself. We simply split the range of the

4.5. Discretization attribute intoK parts of identical size.
Since most of our variables are continuous, we need to0 dissxample 4.5. Let L%, the average length-class density of

cretize them in order to be able to compute the marginal likeli~, parr in the previous year, have values in the range
hood in closed form.



Table 4. Example 4.3. (a)V;;x, i.e. the numbers of cases where the variables have a particular value combination in the data. (b) The
marginal likelihoods of not having vs. adding an arc between all focus of prediction - predictor pairs.

S;=few S;=many marginal likelihood
E)T,=few 9 1 S; ET, 2.82.-10 M
EJ*,= many 1 9 S; — EO, 933.31 - 104
E. 07 =few 8 ] S B 122-10
E % =many| 2 6 Si —s BZOF 3.46- 10714
B0, =few 5 5 S B, 28210 2
E} = many 5 5 Si —s BV, 0.37-10~14
E707=few 5 1 S: B0 14.62-10 7
E7%r=many| 5 9 Si —s EZOF 18.47 10714

_
2

(b)

Fig. 8. Example 4.4. The structure discovered in Example 4.3 using marginal likelihood as the search criterion. The thickness of the ar
corresponds logarithmically to the evidence for that particular dependency. Only nodes connected to the focus of prediction (i.e. with
higher evidence for an arc than for its absence) shown.

R; = [0..9] in the data. If we use equal-width discretization Example 4.6. Let our observed data anfl’ be as in exam-
and K is 3,7; = {3,6}. Let our observed data be as shown ple 4.5. Initially our disjoint subsets arg0, 0.1}, {0.3} and
in Table 5(a). Our discretization maps it as shown in the lower{8}. The means of these subsets [@r85, 0.3, 8]. Our first di-
part of Table 5(a). vision points are[0.175,4.15]. The value subsets defined by
_ _ o these split points equal our initial subsets, so the process has

Equal-width discretization thus depends only on the rang@onverged already. Our discretization of the original values is
of the variable. The range can be supplied as part of biologicajhown in the lower part of Table 5(a).
knowledge or determined from the data. .

K-means discretization finds the threshold values by an iter- 10 compare these two techniques, note that whereas equal-
ative processk — 1 division points are first placed withiR ;, width discretization only depends on the rangé&/pfK-means

defining subsets of values. The following procedure is then ret@kes into account the distribution of the valueslofin the

peatedh times: data: regions more densely packed with values get more densely
packed threshold values.
1. The means of each subset are calculated. In our empirical studies, we performed both kinds of dis-

cretization based on the training data alone, again in order
2. The new division points are put at the exact midpointsto avoid information leakage from the validation data to the
between successive means. model learner.

3. The values are dealt out into the new subsets defined bgy_5_2_ Context-dependent mappings

the new division points, in order. In context-dependent discretizations the values of other vari-

ables co-occurring in data vectors are taken into account. Since

e e G0l focuse] redictio ofvaraie e tak te vl
b P Y4es ofY in each data vector as our context when discretizing

the values o¥/; that occurred in the data were first ordered, an X;: 1.e. we seek for such a set of threshold values that the val-

then split, in order, intd< disjoint subsets of equal size (i.e. o . o
each subset hds; /K | elements). If-; is not exactly divisible ggzs\’iﬁzm each discrete category have as similar a context as

by K, we make the first; — K subsets one member larger. . .
' oot . When searching fof; we need a metrio\I(7;, D) to tell
\Tgllejeesnlq r\?vseurl;[a(\)/]:atz!ssegief t5N|?1 gﬁ)rccaerfl?)ilrsicg?;ti%ﬁgsf {reshols when to insert a threshold valti; between two data val-
v ) ues that occurred for variablé. If our metric satisfies a set of



Fig. 9. Examples of Bayesian network structures. (a) A sampling type Bayesian network structure, with partitioning of predictor space.
(b) Two examples of diagnostic Bayesian networks with overlapping relevant predictor subsets of size 3.

T o0 TEHe0® 0F® D

Table 5. Examples 4.5, 4.6 and 4.7. (a) The observed data and the resulting discretizRtjors|0, 9]. (b) The scores of different
discretizations forK € {2,3} using Mz,.(7;, D).

K| 7 Mope(7i, D)
L7% data 0 01 03 8 [0.05] 5.66296
The corresponding value ¢f; | few few many many 2 | [0.2] 4.68213
Equal-width,K = 3 0 0 0 2 [4.15] 5.66296
K-meansK = 3 0 0 1 2 [0.05,0.2]  4.96981
Mope(T;,D), K =2 0 0 1 1 3 | [0.05,4.15] 5.66296
[0.2,4.15]  4.96981

@)

technical requirements, especially the requirement of deconwe first encode the number of different original valiésas,
posability, we can find the metric-optim] by dynamic pro- which can be done with codtg|V;|. Then the positions of
gramming. Several metrics that meet these criteria have bedi — 1 split points from among thg/;| — 1 possible candidates
proposed in the literature. (See [10] for an overview). are added to the code. Finally, we encode the distributions of
In our empirical studies we have chosen to use an informatiarentexts within each category, using sampling with replace-
theoretic metricM s, (7;, D) (the DL evaluation function of [10])ment as our model. It should be kept in mind that our aim is to
minimizeMa,,.(7;, D).

Mope(7;, D) = Note especially that this discretization method allows au-
Vil — 1 tomatic determination of a metric-optimaf. In our empiri-
log |Vi| + log < K—1 > cal studies, we let the method determine the optifatithin
(11) p range[2, 10].
— Zlog L (- (v +1) (7 + nlex, ) 1>, Example 4.7. Let our observed data anfl” be as in exam-
=1 (rey) - (rey+1) -+ (rey +mj —1) ple 4.5. We search over all possible discretizations, letting the

) . . number of categorieg( be either 2 or 3. Table 5(b) shows
where|V;| is the number of different valueg has,r. is the  he scores. You can see that the context makes the metric pre-
number of values our discretized focus of prediction s, fer (j.e. give smaller scores to) discretizations which make the
goes over all categories of our discretization; is the num- g Iting categories internally as homogeneous with respect to
ber of original values assigned to categgryandn(cy, j) IS context (value of;) as possible, i.e. discretizations with a split
the number of times contex}, (predicted variable’s value) oc- point hetween original values 0.1 and 0.3 are preferred. Of
curs within that category, i.e. the number of times the origina hese, the one with only two categorids & 2) is preferred
values assigned to discrete categgrgccur in contexicy in - oyer the three-category case, since the splitting of the second
D. The predicted variable needs to be discretized first, if it IScategory is superfluous according to the metric, adding unnec-

continuous. We did this by K-means discretization in our ém-assary complexity. Our discretization of the original values is
pirical studies. The parameteris a prior on the occurrences gnown in Table 5(a).

of contexts within each category. We have used- 1 at all
times, i.e. we pretend to having observed one occurrence 9{6 The loss function
each context prior to looking &D, the actual observations. - ) ) . . .

In information-theoretic terms, this metric calculates the cost Since, from the point of view of decision making, an im-
of using atwo-part codeas an encoding of the discretization Portant goal in the analysis of wild salmon populations is the
(see e.g. [4] for more on two-part codes). Intuitively speakingMaintaining of biodiversity, we should be conservative in our



predictions: to err on the positive side (predicted value is greaté&. Empirical results
than the correct value) is more serious than erring on the nega-

tive side (predicted value is smaller than the correct value). In In the foIIowmg_we d?SC“be the resu_lts of preqllctmg _the
other words, ouloss functiorshould be asymmetric. wild smolt production using the data available for rivers Simo

; ; . and Tornio (the Finnish side). Our data consist of time series
We have used loss functions of the following type: of 17 and 15 years of data, respectively. At the highest level we
(12) split our results into three classes:

‘ «

‘C(ypvyc) = ‘yp — Ye
wherey, is our predictiony, is the correct value, and con-

)

e The results of learning our model from the data for the

trols the steepness of our penalization for error. For the goal of
biodiversity maintenance, we used an asymmetric loss function

if Yp > Yes

. |yp — Y|
(13)  Lasymm (Yp, ye) = { otherwise

|yp —yc|“2

That is, we employ a different error exponent for the cases
where our model is optimisticf) vs. pessimisticdz). And
since we want to be conservative, > o, always holds. To
summarize the loss of a series of predictions made in a valida-
tion set, we take the average of the losses of individual predic-
tions, i.e. a loss incurred by an erroneous prediction is treated
equally independently of the moment in time it occurs at.

Example 4.8. Let our focus of prediction b#;, and our loss

Finnish side of river Tornio, validating the model by pre-
dicting for river Simo.

The results of learning our model from the data for river
Simo, validating the model by predicting for the Finnish
side of river Tornio.

The results of learning our model from the data for both
rivers, and validating the models by splitting the data
randomly to 80% of training data and 20% of valida-
tion data. The splitting was done 50 times. The particular
split percentages chosen were based on the smallness of
the data set: a 50-50 split would provide too little train-
ing data, whereas if the choice were skewed, say 95-5,
the one or two vectors left to the test set might differ
from the training set too much.

function be symmetrical absolute difference, ig.= 1 and

as = 1. We are searching for the best predictive Bayesian
network structure using an empirical criterion. We have a set
of “second-order” training data, and a set of test data to assess
the predictive performance of the models. At the moment wi

have two structures to considéds, and Bg, .

If a series of correct values fd; is [3000, 5000, 10000] and
modelBg, is optimistic and predict§7000, 6000, 10000], our
loss is on averagel000+1000+0)/3 = 1670. Model Bg, on
the other hand is pessimistic and predift800, 2500, 8500],

The first two types of result validate our models by using
one of the rivers as the training set and the other one as the
alidation set. This enables us to assess to some extent whether
ur models are transferable across rivers, i.e. we check against
overfitting to a particular river. The last type shows the results
of assuming the data for different rivers is compatible.

For each of these lines of study, we let the length of history
available to us extend to 5 years. Given a training data set and
a validation data set as described above, we proceeded in the

incurring average losg2000 + 2500 + 1500)/3 = 2000.
Hence, the optimistic model is preferred. Note that wherea:

;ollowing fashion:

Bg, always errs, its errors seem to be bounded. On the other 1. We split the domain to subdomains as follows:

hand Bs, only makes one serious error, but that error results
in gross overestimation.

Let nowa; = 2, i.e. we penalize for optimistic predictions.
With the same correct values and predictions our average loss
is now (40002 + 10002 +0)/3 = 5666666.67 for Bg, , whereas
for Bg, the loss is(2000 + 2500 + 1500)/3 = 2000 as ear-
lier, i.e. using the optimistic model incurs neaB§00 times as
much loss as using the pessimistic model now.

We can visualize the different nature of predictive models as
shown in Fig. 10, where the axis shows the correct values
and they axis the predictions of the models in question.

In the case of the marginal likelihood criterion described ear-
lier, the loss function minimized is

(14)  Liog(P,yc) = —log P(ye),

whereP(Y') is the predictive distribution. Intuitively speaking,
marginal likelihood seeks for the model whose predictive dis-
tribution is the “closest” one to a “correct” one. The advantage
of an empirical search criterion is that an arbitrary loss function
different from£;,, (P, y.) can be used already in the model se-
lection phase, although a consequence is that the model selec-
tion procedure does not lie within the Bayesian framework any
more.

(a) Only densities as predictors.

(b) Only densities and smoltification age data as pre-
dictors.

(c) Only densities and catch data as predictors.

(d) Only densities and reproduction indices as predic-
tors.

(e) All of the available data as predictors.
Furthermore, we compared using domain expert-given
density estimates to using average length-class densities.

This domain splitting was done to study the dependency
of predictive performance on the amount and quality of
knowledge about the domain.

. We tried each candidate from a set of model classes,

i.e. subsets of possible Bayesian network structures, to-
gether with a set of discretization schemes. The structure
types we tried were:

(a) Sampling-type structures, no variable selection.

(b) Sampling-type structures, with variable selection.

(c) Sampling-type structures, partitioning structure.



Fig. 10. Example 4.8. The points are predictions made by the model for a given correct value. The line depicts a perfect predictor, i.e.
predictions which are equal to the correct value. £) , the optimistic model. (b)Bs,, the pessimistic model.
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(d) Mixtures of diagnostic structures with 1 to 3 arcs 4. Given the resulting model, we measured its predictive

per component. performance using ..symm (¥p, ¥c), With the symmetri-
(e) Diagnostic structures of 1 to 3 arcs, with variable cal casey; = 1, and the optimism-penalizing one (=
selection. 2). ap = 1 always.

Our arsenal of discretization methods was:

5.1. Normalization of data

(a) Equal-width discretization with 2 to 5 categories.  Our first approach was to use the data as it is, but we soon
(b) K-means discretization with 2 to 5 categories. realized that the two rivers have quite different magnitudes,

(C) Ma,.(T;, D), letting the method choose the opti- making transfer of knowledge using absolute values impossi-
pc\ 41y ’

mal number of categories from within the range ble. A model trained on Simo would never have seen numbers
[2,10] of the magnitude of Tornio, and thus would always shoot low
T and v.v.

3. Given a set of structures and a discretization scheme, we Hence we decided to normalize our data using
sought for the structure describing the domain the best
via two criteria: (15) W = Yij — Hi

K2

(a) The marginal likelihood criterion.

(b) Anempirical criterion, where the search was starte

avhereviyj is an original value of variabl&;, u; is the empiri-
I mean ofl; ando; is the empirical standard deviation Gf.
ote that to stay absolutely honegt,ando; have to be calcu-
lated from the training data alone. Otherwise they will provide
quite a lot of information about the validation set, given our
training data and 20% of test data. The parame-sca.nty data. Also, if an empirical criterion is used, the nor-
ters of the model were learned both prior and aﬁermal|zat|o.n.parameters have to be determined from the second-
the operation from the second-order training data,order training data as well. .
proceeding to measure the predictive performance Normallzatlon produces a model that only speaks of things
of the pre- and post-operation models on the tes{" relative terms, but note that we can always translate the pre-
dictions of our model back to absolute values, provided we ob-

data (the 20% part). To ensure the representative:

ness of the test set, the random splitting to a sect@inu; ando; somehow. They need not be determined empiri-

ond order training set and a test set was performe&ally: given a river with no data on smolt production a biologist
50 times. If the performance was better after theOr fishery scientist can hypothesize about the mean and stan.

arc operation, the operation was performed, and <,gard deviation of smolt production in the river, plug the values
new one picked randomly. The number of arc op_ln and see the absolute values. Mostimportantly, from the man-
erations tried for a particular second-order trainingage”al. point of view, relative values suffice for the qualitative
data—test data pair was 1000, analysis of changes in the population over time.

from an empty graph, proceeding as in Chapter 4.4
Repeatedly, a random arc operation was picked
either an addition or a removal. The training data
was then split randomly to 80% of “second-order”



5.2. Presentation of results 5.4. Training on Simo, validating by Tornio

Since our results indicated that in the sampling paradigm We also reversed roles, learning the model from the nor-
variable selection usually paid off, and on the other hand théhalized data for the smaller river, trying to predict for the
partitioning networks as well as diagnostic structures of mord@rger river. The results were slightly poorer than the other
than one arc performed poorly (most likely due to the smalWay around, and a noticeable feature in all subdomains and
size of the data set, leading to drastic overparameterizatioyyith both criteria was that the models tended to be optimistic
when using these model classes), and one-arc diagnostic strdtdomain experts’ estimates of densities were used, except in
tures were too impoverished to possess predictive potential, w8€ case of having been learned using an empirical criterion

present only the results obtained in the sampling paradigm udavouring pessimism. _
ing variable selection. Figures Fig. 13(a) - Fig. 13(d) show the results of seeking

via marginal likelihood. All variables were eligible. This time

We have reported the results of variable selection in the sam); ; o o
pling paradigm by two means: using marginal likelihood as th'ghe best discretizations produced quite different models for the

criterion andn; — 1 as the loss function, and using an empiri- different types of density estimates. It is noticeable how aver-
cal criterion with two loss functions, one symmetrig (= 1), ~ 29€ length-class densities did not get picked at all. In all sub-
the other penalizing for optimistic predictions(= 2). Since domains, only the average length-class densities of older parr

the choice of a set of structure candidates and discretizatioﬁ”ét yeari — 4 were considered relevant. Reproduction indices

would ideally be done by a biologist or a fishery scientist, Weag?asorzohl/T?p:{oductlon in the past got picked again, as well as

show as a baseline indicator of performance the model (fro Note how the predictions made using length-class estimates
among our fixed set of discretization schemes) with the bef{ P g'eng

predictive performance measured by a particular loss functiortVHich actually were irrelevant) are pessimistic compared to
he optimistic estimates made using expert estimates.

Figures Fig. 13(e) - Fig. 13(h) show the results of seeking
5.3. Learning a model from river Tornio, validating by for a model' using ou'r'empirical _cri'terion. While the use .of
river Simo a loss function penalizing for optimism seems to work using
] . o . both types density estimates, it seems like the procedure penal-
Despite the fact that river Tornio is a much larger river com-jzed for optimism too steeply: the models tend to be overwary.
pared to river Simo, our normalization allowed our models to  Fig. 14 shows an example of restricting the available vari-
predict for the smaller river reasonably well when taught onaples to a subdomain. In this case we study the use of a repro-
the data for the bigger one. duction index in kilos together with density estimates. It can
Figures Fig. 11(a) - Fig. 11(d) show the results of seekingbe seen that using a symmetrical loss function when selecting
via marginal likelihood. All variables were eligible. It can be a model produces an optimistic model, whereas making use
seen that both types of density estimates for yeas are rele-  of pessimism-gratifying scoring for models clearly works, al-
vant, albeit feebly so. With respect to domain expert-estimatethough the resulting model might be too cautious. Note the
densities, the density of 0+ parr in the previous year is quite drastic difference in discovered structures: seeking for pes-
relevant, whereas for average length-class densities their desimistic models cuts down the number of predictors from 16 to
sity three years earlier is weakly relevant. For all of the other3. Also, while the model learned using a symmetric loss func-
variables the models agree, emphasizing data for ¥eaB.  tion made use of alR? variables bar the one for year 4, the
The reproduction indices of both kinds three years back arpessimistic model drops the reproduction indices altogether.
relevant, whereas the raw catch numbers are only weakly so.
Somewhat surprisingly, M74 percentages in the previous yea.5. Learning a model from the combined data
are considered helpful, as are smoltification age estimates for gina|ly, we put the normalized data of both rivers together.
smoltification at 3 and 4 years three years earlier. In the scheme where we learn the model from the data for
Figures Fig. 11(e) - Fig. 11(h) show the results of seekingne river and validate by predicting for another, the fact that
for a model using our empirical criterion. It can be seen thathe data sets come from separate biological systems provides
the results are poorer than with marginal likelihood. Possiblya strict validation procedure. When we use the combined data,
despite our efforts at avoiding overfitting, the empirical modelswe have to do validation by repeated artificial separations to
have learned patterns which are more suited to river Tornio. 80% of training and 20% of validation data. Due to this less
Fig. 12 shows an example of restricting the available varistringent validation scheme, we also show in Fig. 15 the struc-
ables to a subdomain. In this case we study the use of a reprtire with the highest marginal likelihood over all discretization
duction index in numbers together with density estimates. Thechemes, regardless of the predictive performance.
estimates of both expert-estimated and average length-classlt can be noted that reproduction stage variables dominate in
densities are very similar, no doubt due to the low relevanceelevance. Smoltification age variables drop to a marginal role,
of the average length-class variables selected. In this case thad M74 is altogether missing. Smolt production in the past
best discretization scheme favoured the index of reproductiors considered quite relevant as well. Of the density estimates,
in numbers four years back in time. The number of smolts fiveonly expert estimates for older parr five years back are picked,
years earlier was selected as well: studying the behaviour dhe length-class estimates not at all.
our models we saw that broadly speaking there exists a nega- The results of doing repeated 80-20 validation are shown in
tive correlation betweef; andsS;_5, due to the periodic nature Fig. 16 for both criteria. When using marginal likelihood, the
of smolt production in our data. best models for both types of density estimates dropped the
density variables altogether, arriving at the same model, which



we show in Fig. 16(a) and Fig. 16(b). The reproduction stagerders of magnitude bigger than the rest of the data, is really
data is highly relevant again, while smoltification age data isan indication of the nature of the data. Even in the river vs.
slightly more relevant than in the maximum marginal likeli- river scheme, having seen only one example of such values in
hood structure. The predictive performance of the model ishe data, a generalizing model should not really be expected to
quite good, barring the outlying correct value at the high encbe able to predict correctly for the one similarly outlying case
of the range. in the validation set, keeping in mind that our rivers are sep-
Figures Fig. 16(c) to Fig. 16(f) show how using an optimism-arate biological systems, and the results and the data indicate
avoiding model selection criterion affects the results drastithat they are somewhat different as well.
cally, pushing most of the predictions to the pessimistic side In our empirical results we studied how informative the real-

of the line depicting perfection. world data sets we used are. If desired, biological knowledge
could also be made use of, e.g. in the choice of possible model
6. Conclusions structures, in the determination of parameter priors or in the

i choice of threshold values in the discretization. Another di-
We have defined and demonstrated a methodology for thgyction for future work would be to utilize more complex loss
prediction of smolt production in the probabilistic framework. fnctions than the relatively simple asymmetrical loss function
Our goals were managerial, aiming at generalizing models Ca;seq here. For example, the steepness of the penalization for
pable of adjusting to the needs of fisheries management, whilgor could depend on the correct value, e.g. if the population

maintaining good predictive performance. Our empirical re<ig actyally “large”, errors are less serious than when the popu-
sults illustrated the performance of our methodology on realisiion is on the verge of extinction.

world data. In the interest of unbiased evaluation, our valida-
tion schemes were as strict as possible.
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Fig. 11. Learning a model from the data for the Finnish side of river Tornio, predicting for river Simo. Sampling-type structure with
variable selection. Densities and all other data as predictors, history of five years. (a) - (d): Structure search by marginal likelihood ove
different discretizations. Structure with the best predictive performance using 1 shown. (a) and (c) Estimated densities. (b) and (d)
Average length-class densities. (e) - (h): Structure search by an empirical criterion over different discretizations. Models with the best
predictive performance foiv; = 1 anda; = 2 shown. (e) Estimated densities; = 1. (f) Estimated densitiesy; = 2. (g) Average

length-class densitiesy; = 1. (h) Average length-class densities, = 2.
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Fig. 12. Learning a model from the data for the Finnish side of river Tornio, predicting for river Simo. Sampling-type structure with
variable selection, structure search by marginal likelihood over different discretizations. Structure with the best predictive performance
usinga; = 1 shown. Densities an®;* as predictors, history of five years. (a) and (c) Estimated densities. (b) and (d) Average
length-class densities.
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Fig. 13. Learning a model from the data for river Simo, predicting for the Finnish side of river Tornio. Sampling-type structure with
variable selection. Densities and all other data as predictors, history of five years. (a) - (d): Structure search by marginal likelihood ove
different discretizations. Structure with the best predictive performance using 1 shown. (a) and (c) Estimated densities. (b) and (d)
Average length-class densities. (e) - (h): Structure search by an empirical criterion over different discretizations. Models with the best
predictive performance foiv; = 1 anda; = 2 shown. (e) Estimated densities; = 1. (f) Estimated densitiesy; = 2. (g) Average

length-class densitiesy; = 1. (h) Average length-class densities, = 2.
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Fig. 14. Learning a model from the data for river Simo, predicting for the Finnish side of river Tornio. Sampling-type structure with
variable selection, structure search by an empirical criterion over different discretizations. Structures with the best predictive performanc
for a; = 1 anda; = 2 shown. Densities andk?, history of five years, predictive performance. (a) and (c) Estimated densities, 1.

(b) and (d) Estimated densities; = 2.
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Fig. 15. Learning a model from the combined data for the two rivers. Sampling-type structure with variable selection, structure search t
marginal likelihood. All of the available data as predictors, history of five years. Structure with the highest marginal likelihood over all
discretizations.




Fig. 16. Learning a model from the combined data for both rivers, Validating by 80-20 splits to training and validation data. Sampling-
type structure with variable selection. Densities and all other data as predictors, history of five years. (a) - (b): Structure search by
marginal likelihood over different discretizations. Model with the best predictive performance ausirgl shown. (a) and (b) All data.

(c) - (f): Structure search by an empirical criterion over different discretizations. Models with the best predictive performance-for
anda; = 2 shown. (c) Estimated densities; = 1. (d) Estimated densitiesy; = 2. () Average length-class densities, = 1. (f)

Average length-class densities; = 2.
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