HELSINKI
INSTITUTE FOR
INFORMATION
TECHNOLOGY

VERSION HEADERS FOR FLEXIBLE
SYNCHRONIZATION AND CONFLICT
RESOLUTION

Ken Rimey

November 22, 2004

HIT
Technical

Report
2004-3

Version Headers for Flexible Synchronization and Conflict Resolution

Ken Rimey

Helsinki Institute for Information Technology
Tammasaarenkatu 3, Helsinki, Finland

P.O. Box 9800

FIN-02015 TKK, Finland

http://www.hiit.fi/

HIIT Technical Reports 2004-3
ISSN 1458-9478

Copyright © 2004 held by the authors.

The HIIT Technical Reports series is intended for rapid dissemination of articles and papers
by HIIT authors. Some of them will also be published elsewhere.

Version Headers for Flexible Synchronization
and Conflict Resolution

Ken Rimey
Helsinki Institute for Information Technology
rimey@hiit.fi

Abstract

We propose a set of metadata fields to be included in object versions to enable a
form of optimistic replication in which synchronization is performed by copying
versions from site to site. To enable determining whether one version has been
derived from another, we include in the metadata an explicit list of predecessor
version IDs, utilizing range encoding to achieve a compact representation.

We allow conflicting versions to be copied from site to site, creating a possibility
that multiple sites will attempt to resolve the conflict. The paper defines a scheme for
consistently arbitrating among different resolutions of the same conflict, and for
avoiding run-away cascades involving conflicts among conflict resolutions.

The proposed architecture enables the use of a variety of synchronization
protocols and conflict resolution algorithms in the same distributed system. We are
using it in a research prototype of a replicated XML database running on desktop
computers and Symbian OS mobile phones.

Keywords

Mobile data management, optimistic replication, data synchronization, epidemic
algorithms, versioning, conflict resolution, native XML database.

1. Introduction

Optimistic replication, in which updates to a replicated data set are accepted at any
replica site without coordination with the other sites [2, 14], can be based on
propagation of object versions from site to site [8, 3], or it can be based on
propagation of updates [13, 6], such that the current version of an object at a site is
implicitly determined by the log of updates known at that site. While both
approaches are interesting (and hybrid approaches are feasible), this paper focuses on
version propagation.

With update propagation, synchronization and conflict resolution are naturally
intertwined, because even if arriving updates reflect the concurrent creation of
different new versions of an object at different remote sites, the assembly of these
updates into a single log will effectively define a single merged version. In that

approach, conflict resolution amounts to deciding how to order the log entries, and
possibly how to omit or modify some of them, such that the preconditions of all the
entries are satisfied and the log can be executed to produce a result.

With version propagation, it is possible to generalize by not requiring conflicts to
necessarily be resolved when synchronizing [3]. Synchronization then primarily
amounts to copying of object versions from site to site. If nobody chooses to resolve
a conflict between two concurrently created versions of some object, both versions
will eventually be copied to all sites, achieving convergence in the specific sense that
all sites have the same data.

This opens up the possibility of conflict resolution being performed by entities
other than the synchronization engines. Whereas simple conflicts can and should be
resolved as soon as they are detected, trickier conflicts are better left to client
applications, which know the semantics of the data but are not necessarily running at
the time or place the conflict is detected. Some conflicts, moreover, will require
manual resolution.

In any case, we reject the notion of letting unresolved conflicts partition the
network with respect to the objects in question.

An important goal for us is to allow the use of a variety of synchronization
protocols and conflict resolution algorithms in the same distributed system. Since the
use of a particular synchronization protocol is essentially a matter to be agreed upon
between the two synchronizing sites, we wish to limit the requirements imposed on
other sites. In particular, we decline to require versions to be propagated in any
particular order, or to exclude the possibility of some device storing and propagating
only a partial data set.

Similarly, we wish to allow coexistence of a diversity of conflict resolution
algorithms within the same system, including algorithms that produce different
results. This requires a scheme for consistently arbitrating among the results, and for
avoiding run-away cascades involving multiple attempts to resolve conflicts among
conflict resolutions.

The cornerstone of our solution and the focus of this paper is the design of the
version header, a small set of metadata fields attached to each object version. The
metadata and data for an object version comprise an immutable document, which is
the atomic unit in which data is copied from site to site in synchronization.

The main challenges are as follows:

* Assigning unique version IDs in a distributed system.

* Enabling determination of the relationship between two versions v and v’ of an
object—namely, whether v supersedes v’, v’ supersedes v, or neither supersedes
the other.

* Arbitrating consistently among conflict resolutions and avoiding run-away
cascades.

Our version IDs are local counter values prefixed by a probabilistically unique
string identifying the counter. We enable determination of the relationship between
two versions by including a complete list of the ancestor version IDs in the version
header. We use range encoding to achieve a compact representation of this list in
most practical circumstances. We arbitrate among multiple resolutions of the same
conflict and avoid run-away cascades by labeling versions created as a result of
automatic conflict resolution with a description of the conflict being resolved, and by
discarding all but one resolution of each distinct conflict in a consistent manner
across replicas.

We have applied the ideas described in this paper in a research prototype of a
replicated XML database, which stores collections of small, well-formed XML
documents and provides an XPath [16] query capability, enabling client applications
to select a subset of a collection to fetch and then monitor. Application areas with
which we are experimenting include personal information management (PIM) and
management of digital media files. In calendaring, for example, a collection
represents a calendar and the objects in the collection represent calendar entries,
which take the form of little XML (xcal) documents interconvertible to and from
IETF iCalendar format [1]. In collaborative photo archive management, to take
another example, the objects are metadata records [15] recording information about
photographs and tracking the locations of the actual image files.

2. System Model

We assume a set of repositories, which operate as the nodes of a distributed
system. Each repository contains a number of named collections.

Each collection C defines a set C, of object versions at time t = 0, 1, 2... All
collections start empty at ¢ = 0.

The contents of a collection C can evolve by adding an object version v:

C,=C_,U{v}
This can happen in one of two ways: A new object version v can be created at C, or
an existing object version v € C’, _, can be copied into C.

We denote the object identity of a version v as object(v). That is, v and v’ are
versions of the same object if and only if object(v) = object(v’).

When an object version v is first created, it is assigned a set of zero or more parent
versions, parents(v), which must be versions of the same object as v:

v/ € parents(v) = object(v’) = object(v)
Most object versions will have either one parent or no parents.

The set of ancestors of an object version v, ancestors(v), includes the parents, the
parents of the parents, and so on. In other words, ancestors(v) is the minimal set such
that

parents(v) C ancestors(v)
and
v’ € ancestors(v) = parents(v’) C ancestors(v)
If v’ € ancestors(v), we say that v supersedes v’. Note that supersedes is a transitive
relation.

If v € C, and there is no v’ € C, such that v’ supersedes v, we say that v is current
in collection C at time ¢. Client applications accessing a collection will, for most
purposes, only be interested in the current object versions.

When an object version v is first created, it is assigned a logical clock value [10],
Iclock(v) €{1, 2, 3...}. We require that

v’ € parents(v) = Iclock(v) > Iclock(v’)
Furthermore, if v is created at a collection in a given repository at time ¢, it is natural
to choose Iclock(v) such that, for all collections C in that repository,
v'€C,_, = Iclock(v) > Iclock(v’)

We will permanently designate each object version v as either an ordinary version,

a tombstone, or a join.

<vevent meta:key="321b63a93a98"”

meta:version=“5fdblc:7"
meta:parents=“5fdblc:6"”
meta:ancestors=“5fdblc:1-6 led41f:1-2,5"
meta:lclock="44392"
xmlns:meta="..">

<summary>Afternoon meeting</summary>

<dtstart>20040615T140000</dtstart>

<duration>PT1H</duration>

</vevent>

Figure 1. Calendar entry with versioning metadata.

Tombstones serve to provide deletion functionality of a sort, without requiring
removal or modification of object versions. Tombstones always have exactly one
parent, and they are never parents themselves.

Joins are versions that have been created automatically for the express purpose of
eliminating or reducing a conflict. Joins always have more than one parent.

A conflict is a set of two or more current non-tombstone versions of the same
object in some collection.

Finally, we also permit removal of an object version from a collection:

C=C_,—{v}
However, we disallow removing current versions.

Note that an object version that is present but not current in a collection C at time ¢

will never be current in C at any later time ¢’ > 7.

3. Metadata Fields

On a more concrete level, we actually define five metadata fields for each
ordinary object version: key, version, parents, ancestors, and 1clock. In
our XML database application, these correspond to attributes on the root element of
each document. Figure 1 shows an example.

Tombstones and joins use these same attributes. Tombstone versions are
distinguished by a special root tag (meta:tombstone). Joins are distinguished by
the presence of an additional join attribute.

The metadata fields included in an object version, like the data itself, are
determined when the version is first created and never modified thereafter.

3.1. key

Every object version v has a key attribute defining the value of object(v). This
object ID is an arbitrary, opaque Unicode string. Two object versions are versions of
the same object if and only if they have the same object ID.

An application program creating an initial version of an object might specify the
object ID explicitly, or it might allow the repository to generate a probabilistically
unique object ID.

3.2. version

Every object version also has a version attribute defining a version ID that
must distinguish it from all other versions of the same object. The version ID
consists of a version prefix and a decimal counter value, separated by a colon (“:”).

The object ID and the version ID can be combined with an intervening slash (“/”)
to form the full ID of the object version, which will look something like this:

321b63a93a98/5fdblc:7

Each repository maintains a counter for each object for which it has allocated one
or more version IDs. (We actually maintain a separate counter for each collection
when an object appears in several collections in the same repository.) Each counter
has an associated version prefix uniquely identifying it among all others associated
with the same object.

Our version prefixes are simply pseudorandom strings of hexadecimal digits.
Proper seeding of the random number generator is essential here for minimizing the
likelihood of a collision. Examples of appropriate seeds include a Universal Unique
Identifier (UUID) or a sufficient number of bits of environmental noise (as in Linux’s
/dev/random) [9].

An alternative approach, which for many people comes to mind first, is to allocate
a globally unique repository ID—perhaps again a pseudorandom string of
hexadecimal digits—and to use this as the version prefix for all local counters.
However, this has the effect of indelibly linking all object versions created at the
same repository, even for disparate objects, which may be a privacy concern.

3.3. parents

The parents attribute of an object version is simply a space-separated list of the
version IDs of the parent versions. The attribute is omitted for an initial version of an
object. Otherwise it will most typically specify just one version ID. When there is
more than one parent version, as in a join, their order is retained.

This attribute actually turns out to be of little practical use, but we store it anyway
for reference.

3.4. ancestors

The ancestors attribute is fundamental for computing the supersedes relation
and determining whether object versions are current. Its value for an object version v
encodes all of the version IDs of object versions in ancestors(v). The attribute is
omitted if this set is empty. Otherwise the encoding is constructed as follows':

1. Group the version IDs by prefix.

2. Sort the groups in lexicographic order by prefix.

3. Sort the counter values in each group in ascending order and maximally

combine them into ranges, including ranges of length 2.

4. Encode each group as a string along the lines of the following example:

0305£7:1-3,5,10-11

" In practice, one might allow or possibly require the use of certain abbreviations to reduce the
redundancy among the metadata attributes. For instance, one might omit the parent versions from the
ancestors attribute.

5. Combine the encodings into a space-separated list.
3.5. Iclock

The 1clock attribute of an object version v is simply Iclock(v) expressed in
decimal.

Because it is possible for different object versions to share the same logical clock
value, defining a total order requires a tie-breaking rule. Our standard total order on
object versions sorts on Iclock(v) and the components of the full ID, in the following
order:

1. by logical clock value (numerically),

2. by counter value (numerically),

3. by version prefix (lexicographically),

4. and lastly, by object ID (lexicographically).

We use the standard total order to do redundancy suppression in a globally consistent
manner, as described in the next section.

3.6. join

The join attribute is only present if the object version is a join. It is used in
redundancy suppression to avoid run-away cascades in conflict resolution.

The value is a space-separated list of version IDs (sorted by prefix and then by
counter value) of the ordinary versions effectively merged by the join. This set,
joined(v), is defined for any object version v as follows:

visajoin = joined(v) = joined(v’)

v’ € parents(v)
visnotajoin = joined(v) = {v}

If joined(v) = joined(v’) for two joins v and v’, we say v and v’ are redundant. If a
collection comes to contain a redundant pair of current joins, we require the
repository to immediately suppress the one that comes earlier in standard total order
by creating a tombstone for it.

4. The Synchronization Problem

Although designs for synchronization protocols are outside the scope of this
paper, we will define the synchronization problem and comment on the implied
requirements for the version header design.

We define synchronization as a procedure operating on a pair of collections, C and
C’, which may be hosted at different repositories. Its job is to synchronize those
object versions v satisfying a given filter predicate, matches(v). In the XML database
application, this predicate is determined by an XPath expression [16]. If matches(v)
= true, we speak of full synchronization.

The actions performed by a synchronization procedure are limited to copying of
object versions from C to C’ and vice versa (and any suppression of redundant joins
that this implies). The actual procedure will generally take the form of a distributed
algorithm executing at C and C".

We require the effect of performing a full synchronization of a pair of collections
in a quiescent system to be to make them identical with respect to current, non-
tombstone versions. More generally, we require the effect of synchronizing with

respect to a filter predicate to be to make the collections identical with respect to the
current, non-tombstone versions matching the predicate. Note that achieving this may
require copying some tombstones and some object versions that do not match the
predicate.

A simple distributed algorithm for full synchronization might operate as follows.
First, each node sends to the other the full IDs of all current object versions.
Whenever either node receives an ID, it checks whether the named object version is
needed in the local collection, and if so, requests a copy of it from the other node. An
object version is needed in a collection if it is not present and it is not superseded by
an object version that is present. Finally, if the synchronization session can be left
open, change notifications can be used to efficiently keep the two collections in sync
for the duration of the session.

First of all, this algorithm requires that it be possible to determine which of the
object versions in a collection are current. For this, it is sufficient, given two versions
of an object, to be able to determine whether one supersedes the other. (Naturally,
one might choose to maintain an index to the current object versions.) However, the
algorithm also imposes a stronger requirement, namely that it be possible to
determine whether an object version v supersedes another object version v’, given the
version header for v and just the full ID of v". This is of course straightforward with
the proposed version header design. After checking whether v and v’ represent the
same object (which is apparent from the full ID), one simply checks whether the
version ID of v’is present among those encoded in the ancestors attribute of v.

We have confirmed in our XML database prototype that the key, version, and
ancestors attributes also suffice to implement synchronization with respect to a
filter predicate. Moreover, we believe that the proposed version header will enable
probabilistic algorithms (based on hash trees) with data transfer requirements that are
sublinear in the number of object versions in the collections, given a bound on the
number of differences (versions that are present in just one of the collections).

By including in the version header the identity of the collection at which the
object version was originally created, and maintaining at each collection a vector
clock [4, 11] recording the last logical clock value (or a local serial number) seen
from each other collection, it would be possible to quickly determine what needs to
be copied over in a full synchronization by simply exchanging vector clocks, much as
is done for updates in refdbms [5], Bayou [13], and other systems [14]. However,
this approach does not work with filter predicates, and we do not wish to require that
all devices that store data carrying our version headers store all collections in their
entirety.

5. Compactness of the Ancestor List

Here are two rather different examples of how the size in bytes of the
ancestors attribute can grow linearly with the number of ancestor versions
encoded:

* Version 1 is created at some repository, version 2 is derived from version 1 at a
different repository, version 3 is derived from version 2 at yet another
repository, and so on. Version n will have an ancestors attribute of the
form

<prefix 1>:1 <prefix 2>:1 .<prefix n-1>:1

In general, the size of the ancestors attribute will grow linearly with the
number of repositories at which new versions of the object are created.

* Version 2 is derived from version 1, and then new versions are alternately
derived from either the last odd version or the last even version, all at the same
collection. The result is a pair of versions as follows™:

Version ID ancestors
<prefix>:<2n+1>|<prefix>:1,3,5,..,<2n-1>
<prefix>:<2n+2>|<prefix>:1,2,4,6,..,<2n>

Note that a join with these versions as parents would have an ancestors
attribute of “<prefix>:1-<2n+2>".
We consider both examples atypical of expected usage.

Consider, on the other hand, typical circumstances where versions of an object are
only created at N different collections, each at a different repository, and where
conflicts never arise. Then, the ancestors attribute of each version of the object
will take the form

<prefix 1>:1-<k> <prefix 2>:1-<k,> .<prefix n>:1-<k>
where n < N. For fixed N, this grows logarithmically with the number of ancestor
versions encoded.

While we cannot make any such guarantees for arbitrary circumstances, we do
expect the ancestors attribute to remain reasonably compact in a broad range of
practical usage.

6. The Conflict Resolution Problem

Like synchronization protocols, conflict resolution procedures are outside the
scope of this paper, but we will again comment on their requirements on the version
headers.

We define conflict resolution as a procedure that adds joins to a collection C,
where the parents of each join must be current in C when the join is added. That is,
each join with n parents will reduce the number of object versions participating in
conflicts by n — 1. The conflict resolution procedure is permitted to leave some
conflicts unresolved.

Because synchronizations can copy a join to other collections, the action of a
particular conflict resolution process might result in the elimination of a conflict
globally, even if other conflict resolution processes decline to handle that conflict.
However, it is also possible for a number of conflict resolution processes to create
joins for the same object such that the system eventually converges to a state in which
each collection contains more conflicting versions of that object than before. The
redundancy suppression mechanism defined in Section 3.6 is intended to at least
partially control this phenomenon. The following section will elaborate on what it
achieves.

Thus far the main focus of our work on conflict resolution has been on enabling
the system to behave well in the presence of multiple conflict resolution processes,
arbitrating among them when they produce inconsistent results, and avoiding run-
away cascades.

? Repositories can avoid this problem if they wish by allowing multiple counters per object and basing
each new version ID on a counter for which the value immediately following the last one appearing
among the ancestor IDs is available.

Figure 2. Conflict resolution cascades
prevented by redundancy suppression.

The specific conflict resolution procedures with which we have begun to
experiment are based on three-way merging of XML documents. Given a collection
and an appropriate three-way merge algorithm, we select a pair of conflicting
versions v’ and v”, attempt to determine their most recent common ancestor, v, and
then, if three-way merging of v — v’ and v — v” is successful, add the result to the
collection as a join with v’ and v” as parents. By common ancestor, we mean the
version coming latest in standard total order among those that are ancestors of both v’
and v”. If this is not present in the collection, or is not identifiable, we generally
leave the conflict unresolved.

7. Convergence of Conflict Resolution

Consider a system with N collections C' (i = 1..N), where the only sources of new
object versions from some time f, onwards are conflict resolution (Section 6) and
redundancy suppression (Section 3.6). That is, object versions may be copied from
collection to collection, joins may be created for current parent versions, tombstones
may be created by redundancy suppression, and versions may be removed if they are
not current, but new ordinary versions are not created.

Let U, be the set of all object versions that exist in some collection at time ¢:

U= Ui=lA.N Cfi
Let U be the set of object versions that exists in some collection at any point in time:
U = Ut = OU[

Claim: U is finite. (See the Appendix for a proof.)

It follows from the claim that the system will eventually stabilize in a state such
that all conflict resolution processes decline to take any action with regard to the
remaining conflicts.

Without the redundancy suppression mechanism, the claim would be false, and the
system might never stabilize. Figure 2 shows two examples of cascading joins of
joins. In the first, two joins are independently introduced to resolve a two-way

conflict, and then the process repeats ad infinitum. Redundancy suppression prevents
this by creating a tombstone for one of the two joins as soon as they appear in the
same collection.

The second example demonstrates that it really is necessary to define joins v and
v’ to be redundant when joined(v) = joined(v’), and not just when parents(v) =
parents(v’). Here, three two-way joins are independently introduced to partially
resolve a three-way conflict, and then this repeats ad infinitum. Redundancy
suppression stops this after the second round.

8. Related Work

Optimistic replication and epidemic algorithms for maintenance of database
replicas [2] have a rich history, which has been well surveyed by Saito and Shapiro
[14]. Update propagation, as used, for instance, in Bayou [13] and more recently by
Hupfeld [6], has been somewhat more widely investigated than version propagation,
as used here and, for instance, in Notes [8] and Bengal [3].

As in our architecture, Bengal allows conflict resolution to be postponed, such that
“conflicts can be resolved on nodes other than the one that detected the conflict” [3].

The hash history approach [7] is closely related to ours, in that it also labels each
version with an explicit list of superseded versions. Using content hashes as version
IDs has the advantage of securely binding the version ID to the contents of the object
version, providing some protection against introduction of a copy of the object
version with modified data. On the other hand, it has the disadvantage that the lists of
superseded versions do not compress, requiring an aging policy to control their size.

9. Ongoing Work

We have implemented a replicated XML database in Python along the lines
described in this paper. We have experimented with a couple of alternative
underlying native XML databases [12]: Sleepycat Berkeley DB XML, and a simple
dbm-based store without index-based acceleration of XPath queries.

We have ported the latter configuration of our prototype to Nokia’s Python for
Series 60 run-time environment for high-end mobile phones, where we run our
synchronization protocol over GPRS. We are working on utilizing Bluetooth for
synchronizing directly from phone to phone.

Our current synchronization protocol supports filter predicates and is based on
exchanging lists of the full IDs of object versions matching the predicate. We intend
to further optimize for the case of synchronizing large collections that are almost
identical.

10. Conclusion

This paper has described a scheme for labeling versions of objects with a small set
of metadata fields in order to enable update-anywhere replicated data storage, such
that any data set can be synchronized with any other at any time, in whole or in part.
Instead of proposing a specific conflict resolution procedure, the paper has defined a
framework to enable simultaneous and uncoordinated execution of multiple conflict
resolution processes.

10

Kenneth Oksanen, Torsten Ruiger, Pekka Kanerva, Tero Hasu, and Juha Paivérinta
have contributed to the prototype implementation. This work was done in the
Personal Distributed Information Store (PDIS) project funded by the National
Technology Agency of Finland (Tekes) and corporate sponsors Nokia, Hewlett-
Packard, Movial, Innofactor, and Fathammer.

11. References

[1] F. Dawson and D. Stenerson, Internet Calendaring and Scheduling Core Object
Specification (iCalendar), RFC 2445, Internet Engineering Task Force, 1998.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, and D. Terry, “Epidemic Algorithms for Replicated Database Maintenance”,
Proceedings of the 6th Symposium on Principles of Distributed Computing, 1987.

[3] T. Ekenstam, C. Matheny, P. Reiher, and G. Popek, “The Bengal Database Replication
System”, Distributed and Parallel Databases, vol. 9, no. 3, 2001.

[4] C. J. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial Ordering”,
Australian Computer Science Communications, 10(1):56—-66, February 1988.

[5] R. A. Golding, “A Weak-Consistency Architecture for Distributed Information Services”,
Computing Systems, 5(4):379—-405, 1992.

[6] F. Hupfeld, “Log-Structured Storage for Efficient Weakly-Connected Replication”,
Proceeding of the 2004 ICDCS Workshops, 2004.

[7] B. Kang, R. Wilensky, and J. Kubiatowicz, “The Hash History Approach for Reconciling
Mutual Inconsistency”, Proceedings of the 23rd International Conference on Distributed
Computing Systems, 2003.

[8] L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and 1. Greif, “Replicated Document
Management in a Group Communication System”, Proceedings of the Second ACM
Conference on Computer-Supported Cooperative Work, 1988.

[9] J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the Design and Analysis
of the Yarrow Cryptographic Pseudorandom Number Generator”, Proceedings of the Sixth
Annual Workshop on Selected Areas in Cryptography (SAC 99), Springer Verlag, 2000.

[10] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”,
Communications of the ACM, 21(7):558-565, July 1978.

[11] F. Mattern, “Virtual Time and Global States of Distributed Systems”, International
Workshop on Parallel and Distributed Algorithms, 1989.

[12] W. Meier, “eXist: An Open Source Native XML Database”, Web, Web-Services, and
Database Systems (NODe 2002 Web- and Database-Related Workshops), Erfurt, Germany,
October 2002. Springer LNCS Series, 2593.

[13] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers, “Flexible Update
Propagation for Weakly Consistent Replication”, Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[14] Y. Saito and M. Shapiro, Optimistic Replication, Microsoft Research Technical Report
MSR-TR-2003-60, October 2003.

[15] E. Swierk, E. Kiciman, N. C. Williams, T. Fukushima, H. Yoshida, V. Laviano, and M.
Baker, “The Roma Personal Metadata Service”, Mobile Networks and Applications (MONET),
vol. 7, no. 5, September/October 2002.

[16] XML Path Language (XPath), W3C Recommendation, 1999.

11

Appendix: Proof of the Claim in Section 7

Let Ugdinarys Ujoin @0 U gmpgones T€SPeCtively, be the ordinary, join, and tombstone
object versions in U:
U= Uordinary U (]jnin U Ummbsmne
We will show that each of these three sets is finite.

Ordinary versions

Usginary 18 finite because no ordinary object versions are created from time ¢,
onwards.

Joins

Using the definition of joined(v) from Section 3.6, let
Vl = Uordinary
and
V, = {v € Upin | joined(v)| = n} (n=2,3,...)
Observe that joined(v) € U,ginary and thus | joined(v)| < |Umdim| for all v € Uj,. Thus

Uiin = UHHMV,- for some m (namely |Uomlinary

), and to show that Uy, is finite, it will

suffice to show that V,, is finite for all n. This we do by induction on #.

Let f : Uy, = U such that f(v) € parents(v) and joined(f(v)) = joined(v). Such a
function must exist because the application of redundancy suppression before
creation of a join v by conflict resolution means that joined(v’) = joined(v”) for
distinct v/, v” € parents(v).

Let V, be the set of object versions in V, that were originally created at collection
C. Because joins are only created for current parents, after which the parents will
never again be current in that collection (see the end of Section 2), it follows for
distinct v, v'E V,€ (n = 2) that

parents(v) N parents(v') = &
and thus
f(v) = f(v")
Moreover, observe that
veEV,SS = fvey

In other words, there is a one-to-one mapping from V, to a subset of a finite set, and
thus V, is finite. It follows that V, = | J_ 1 NV,fJ‘ is finite.
J=1..

i=ln1 !

Tombstones

From time #, onwards, tombstones are only created by redundancy suppression,
and only for current joins. The number of tombstones created at a given collection
from time ¢, onwards is thus bounded by |anin . It follows that U, pone 1S finite.

12

