
libexact User’s Guide
Version 1.0

Petteri Kaski, Olli Pottonen
HIIT Technical Reports 2008-1

This technical report is the user’s guide to libexact,
a software library for solving combinatorial exact
covering problems.

The Helsinki Institute for Information Technology HIIT (in English)
Tietotekniikan tutkimuslaitos HIIT (in Finnish)

The Helsinki Institute for Information Technology HIIT conducts world-class
research on future information technology.

Its research ranges from fundamental methods and technologies to novel
applications and their impact on people and society.

HIIT’s key competences are in Internet architecture and technologies, mobile
and human-centric computing, user-created media, analysis of large sets of
data, and probabilistic modeling of complex phenomena.

http://www.hiit.fi

HIIT is a joint research institution of
Helsinki University of Technology (TKK)
and the University of Helsinki (UH).

HIIT Technical Reports 2008-1

ISBN 978-951-22-9488-6 (printed)
ISBN 978-951-22-9489-3 (electronic)
ISSN 1458-9478 (electronic)

r1-kansi-1.indd 1r1-kansi-1.indd 1 27.6.2008 14:27:5827.6.2008 14:27:58

Petteri Kaski, Olli Pottonen

libexact User’s Guide

Version 1.0

HIIT Technical Reports 2008–1

Petteri Kaski
Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland
petteri.kaski@cs.helsinki.fi

Olli Pottonen
Department of Communications and Networking
Helsinki University of Technology TKK
P.O. Box 3000, FI-02015 TKK, Finland
olli.pottonen@tkk.fi

Helsinki Institute for Information Technology HIIT
HIIT Technical Reports 2008–1
ISBN 978-951-22-9488-6 (printed)
ISBN 978-951-22-9489-3 (electronic)
ISSN 1458-9478 (electronic)

Copyright c© 2008 Petteri Kaski, Olli Pottonen

Printed at Yliopistopaino, Helsinki

Helsinki Institute for Information Technology HIIT

Tietotekniikan tutkimuslaitos HIIT

Kumpula site

Mailing address:

HIIT

P.O. Box 68

FI-00014 University of Helsinki

Finland

Visiting address:

University of Helsinki

Department of Computer Science

Gustaf Hällströmin katu 2b

00560 Helsinki

tel: +358 9 1911

fax: +358 9 191 51120

Otaniemi site

Mailing address:

HIIT

P.O. Box 5400

FI-02015 TKK

Finland

Visiting address:

Helsinki University of Technology

Department of Information and Computer Science

Konemiehentie 2

02150 Espoo

tel: +358 9 4511

fax: +358 9 451 3277

Spektri site

Mailing address:

HIIT

P.O. Box 9800

FI-02015 TKK

Finland

Visiting address:

Spektri Business Park

Pilotti Building

Metsänneidonkuja 4

02130 Espoo

tel: +358 9 4511

fax: +358 9 694 9768

www.hiit.fi

1 Introduction

This user’s guide documents libexact, a software library for solving combina-
torial exact covering problems. Such a problem instance can be formulated
as a system of m integer linear equations over n variables,













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

























x1

x2

...
xn













=













b1

b2

...
bm













, (1)

with variable bounds

0 ≤ x1 ≤ u1, 0 ≤ x2 ≤ u2, . . . , 0 ≤ xn ≤ un. (2)

It is furthermore required that aij ∈ {0, 1}, bi ∈ {1, 2, . . .}, and uj ∈
{1, 2, . . .} for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Given a problem
instance, the task is to list all of its integer solutions, x = [x1, x2, . . . , xn]. To
avoid listing an abundance of solutions in degenerate cases, only solutions
with xj = 0 whenever

∑

i aij = 0 are to be listed.

Example. The system











1 1 0 0 1
1 0 0 1 0
0 1 0 0 1
1 1 1 0 0

























x1

x2

x3

x4

x5















=











1
1
1
1











with variable bounds

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1, 0 ≤ x4 ≤ 1, 0 ≤ x5 ≤ 1

has exactly two integer solutions, namely x1 = x3 = x5 = 0, x2 = x4 = 1
and x1 = x2 = 0, x3 = x4 = x5 = 1.

A combinatorial interpretation of a problem instance is as follows. The
system (1) in effect requires that each row i is covered exactly bi times using
the columns of the matrix [aij], where a column j covers a row i if and only
if aij = 1. The bounds (2) require that each column j is used at most uj

times in the covering. Each component xj of an integer solution indicates
how many times a column is to be used in a covering.

The libexact library is implemented in the C programming language. The
solution algorithm used by the library is a backtrack search with a branching
rule that always covers a row having the minimum number of candidate
columns available for covering. A detailed description of this technique and
its fast implementation appears in “D.E. Knuth, Dancing Links, Millennial

1

Perspectives in Computer Science (J. Davies, B. Roscoe, and J. Woodcock,
Eds.), Palgrave, Basingstoke, England, 2000, pp. 187–214.”

The library is arguably best suited for combinatorial listing applications
in which (a) the system (1) and the values bi and uj are small, preferably
bi = uj = 1; and (b) the practical challenge is more in listing all the solutions
rather than in deciding whether a solution exists.

If you use the library in your work, scientific or otherwise, the authors
are happy to hear about this. Also, any suggestions for improvement are
greatly appreciated. If you want to acknowledge the use of libexact in your
work, please do so by citing the technical report “P. Kaski, O. Pottonen,
libexact User’s Guide, Version 1.0, HIIT Technical Reports 2008–1, Helsinki
Institute for Information Technology HIIT, 2008.”

2 License

The libexact library is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

The libexact library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the libexact library (see the file LICENSE); if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

3 Getting started

3.1 Obtaining the latest version

The latest version of libexact can be obtained from the web at

〈http://www.cs.helsinki.fi/u/pkaski/libexact/〉.

This user’s guide documents version 1.0 of libexact.

3.2 Compiling

An honest attempt has been made to make the library source code conform
to the ISO/IEC 9899:1999 standard (C99). The library and the example
programs should compile on most modern UNIX (Linux) systems simply by
running the command make. To compile manually, the main library routines
reside in the file exact.c, which must be linked with the utility functions

2

in util.c to obtain a functional library. The public interface to the library
is declared in exact.h.

3.3 Testing

After compiling, it is strongly recommended that the library is tested by
running the test executable test, which, among other tests, checks that
certain known combinatorial integer sequences are correctly evaluated. The
sequence identifiers of the form A?????? refer to the Online Encyclopedia of

Integer Sequences available at

〈http://www.research.att.com/∼njas/sequences/〉.

Please note that some of the tests do take some time to complete.

3.4 Using the library: A first example

To illustrate the use of the library, we will work through a few lines of C
code that solve the example given in Section 1. To use the library, we first
include the header file that declares the interface to the library.

#include "exact.h"

Next, we declare and allocate a data structure for the problem instance.

exact_t *e = exact_alloc();

The problem instance has four rows and five columns, both of which we
choose to identify with integers starting from 1. Arbitrary integer identifiers
can be used for the rows and columns.

exact_declare_row(e,1,1); exact_declare_row(e,2,1);

exact_declare_row(e,3,1); exact_declare_row(e,4,1);

exact_declare_col(e,1,1); exact_declare_col(e,2,1);

exact_declare_col(e,3,1); exact_declare_col(e,4,1);

exact_declare_col(e,5,1);

In declaring the rows, the second parameter is the row identifier i and the
third parameter is the associated covering constraint bi. In declaring the
columns, the second parameter is the column identifier j and the third pa-
rameter is the associated upper bound uj .

It remains to declare the matrix [aij]. We do this by declaring the
positions of the 1-entries in the matrix. All the other entries are by definition
0-entries.

3

exact_declare_entry(e,1,1); exact_declare_entry(e,1,2);

exact_declare_entry(e,1,5); exact_declare_entry(e,2,1);

exact_declare_entry(e,2,4); exact_declare_entry(e,3,2);

exact_declare_entry(e,3,5); exact_declare_entry(e,4,1);

exact_declare_entry(e,4,2); exact_declare_entry(e,4,3);

The example instance is now ready. To find a solution, we call the
function const int *exact_solve(exact_t *e, int *n). Repeated calls
to this function cycle through all solutions of the problem instance; each
solution found is signaled by a non-NULL return value. When all solutions
have been listed, the return value is NULL, after which the next call will
start the cycle again. Each solution x = [xj] is reported as follows. The
const int * return value points to an integer array containing, in arbitrary
order, each column identifier j exactly xj times. The integer pointed by n

is set to contain the size of the solution,
∑

j xj .

The following fragment of code prints all solutions of our example.

int soln_size;

const int *soln;

while((soln = exact_solve(e, &soln_size)) != NULL) {

for(int i = 0; i < soln_size; i++)

printf("%d ", soln[i]);

printf("\n");

}

Finally, we release the allocated problem instance.

exact_free(e);

The file examples/example-first.c contains the source code in this
first example. When executed, the code outputs the desired two solutions
x1 = x3 = x5 = 0, x2 = x4 = 1 and x1 = x2 = 0, x3 = x4 = x5 = 1 in the
following form.

4 2

4 3 5

Observe that both the solutions and the column identifiers in each solution
appear in no particular order.

3.5 Further examples

The file examples/example-partition.c implements a listing program for
set partitions, and the file examples/example-sudoku.c implements a solver
for sudoku puzzles. Example input for the sudoku solver can be found in
the files examples/sudoku-input*.

4

4 Library interface

The header file exact.h declares the interface to the libexact library. Each
problem instance is stored in a structure of type exact_t and manipulated
using the functions documented in what follows. Multiple problem instances
may be manipulated in parallel.

4.1 Errors

Any errors detected by the library are reported by printing an error message
to stderr and aborting the program via abort().

4.2 Memory allocation

Memory allocation is carried out automatically within the library via malloc()
and free(). An error is reported if malloc() fails.

4.3 Modes of operation

Each problem instance is in one of three mutually exclusive internal states
called modes that control the operations that are permitted on the instance.
The modes are DECLARE, FORCE, and ITERATE.

When first initialized, a problem instance is in DECLARE mode, in
which essentially all operations on the instance are permitted. When the
iteration through the solutions is in progress, the instance is in ITERATE
mode, in which most operations on the instance are forbidden. The FORCE
mode is an in-between mode that occurs only in more advanced use when
a partial solution has been forced to the solution stack. The transitions
between modes and the permitted operations are documented in detail in
what follows. For basic use of the library, these modes can essentially be
ignored.

4.4 Initializing and releasing an instance

The following functions initialize and release problem instances.

⊲ exact_t *exact_alloc(void);

Allocates and initializes an empty problem instance and returns a
pointer to it. The instance is initially in DECLARE mode.

⊲ void exact_free(exact_t *e);

Releases the problem instance e.

5

4.5 Declaring an instance

The following functions are used to declare a problem instance.

⊲ void exact_declare_row(exact_t *e, int i, int b);

Declares a row with row identifier i to the problem instance e. The
parameter b is the associated covering constraint bi. The entries aij

are set to 0 for each column j in the instance. An error is reported if
(a) a row with identifier i already exists; (b) b is nonpositive; or (c)
the instance is not in DECLARE mode.

⊲ void exact_declare_col(exact_t *e, int j, int u);

Declares a column with column identifier j to the problem instance e.
The parameter u is the associated upper bound uj . The entries aij are
set to 0 for each row i in the instance. An error is reported if (a) a
column with identifier j already exists; (b) if u is nonpositive; or (c)
the instance is not in DECLARE mode.

⊲ void exact_declare_entry(exact_t *e, int i, int j);

Declares the entry aij at row i, column j in the problem instance e to
be a 1. An error is reported if (a) the row or column does not exist; (b)
the entry is already set to 1; or (c) the instance is not in DECLARE
mode.

⊲ int exact_can_declare(exact_t *e);

Returns a nonzero value if the problem instance e is in DECLARE
mode.

4.6 Iterating through the solutions

For convenience of use, the interface to the solution algorithm is an iterator.
Put otherwise, the state of the algorithm is completely maintained within
the data structure, and each solution is signaled to the user by returning
from the search procedure.

Each solution x = [xj] is reported by means of a solution stack, an
integer array consisting of column identifiers, where each identifier j occurs
exactly xj times in the array, in arbitrary order. The size of the stack is
∑

j xj . In particular, if xj ∈ {0, 1} for all columns j, then the solution stack
consists of precisely the identifiers j for which xj = 1. Only solutions that
satisfy xj = 0 whenever

∑

i aij = 0 are reported. In particular, whenever
the instance has no rows, exactly one solution—the empty solution stack—is
reported.

The following functions can be used in any mode.

⊲ const int *exact_solve(exact_t *e, int *n);

Iterates over all solutions of the problem instance e. Each solution

6

found is signaled by a non-NULL return value, in which case the return
value points to the solution stack; the integer pointed by n is set to
equal the size of the stack. The solution stack is guaranteed to be valid
until the next call to a library function with input e occurs. When all
solutions have been reported (or when no solutions exist), the iteration
resets and the value NULL is returned; the integer pointed by n is not
accessed in this case. The next call restarts the iteration. The instance
is in ITERATE mode during the iteration. When the iteration resets,
the instance returns to the mode preceding the iteration.

⊲ void exact_reset_solve(exact_t *e);

Resets the solution iterator of the problem instance e. If an itera-
tion was in progress, the instance returns to the mode preceding the
iteration.

4.7 Examining an instance

The following functions are used to examine the structure of a problem
instance. These functions can be used in any mode.

⊲ int exact_is_row(exact_t *e, int i);

Returns a nonzero value if the problem instance e has a row with
identifier i.

⊲ int exact_is_col(exact_t *e, int j);

Returns a nonzero value if the problem instance e has a column with
identifier j.

⊲ int exact_is_entry(exact_t *e, int i, int j);

Returns the entry aij at row i, column j in the problem instance e.
An error is reported if the row or column does not exist.

⊲ int exact_num_rows(exact_t *e);

Returns the number of rows in the problem instance e.

⊲ int exact_num_cols(exact_t *e);

Returns the number of columns in the problem instance e.

⊲ int exact_get_rows(exact_t *e, int *i);

Stores the identifiers of the rows in the problem instance e to the array
pointed by i, returns the number of stored rows. If the solution stack
is nonempty, only the identifiers of rows for which equality does not
hold in (1) in the current state are stored.

⊲ int exact_get_cols(exact_t *e, int *j);

Stores the identifiers of the columns in the problem instance e to the

7

array pointed by j, returns the number of stored columns. If the solu-
tion stack is nonempty, only the identifiers of non-conflicting columns
in the current state are stored.

4.8 Forcing a partial solution

The following functions are used to push an initial partial solution into the
solution stack. In many cases it is convenient to first define a template
instance, and then push a partial solution to obtain the instance of interest.
For example, the sudoku solver in examples/example-sudoku.c uses this
approach.

⊲ void exact_push(exact_t *e, int j);

Pushes the column with identifier j into the solution stack of the prob-
lem instance e. The instance is in FORCE mode after a push. An
error is reported if (a) a column with identifier j does not exist; or
(b) pushing the column would conflict with a row constraint or the
variable bound; (c) the column has only 0-entries; or (d) the instance
is in ITERATE mode. A complete list of non-conflicting columns can
be obtained via exact_get_cols.

⊲ void exact_pop(exact_t *e);

Removes the most recently pushed column identifier from the solution
stack of the problem instance e. If the solution stack becomes empty
after a pop, the instance returns to DECLARE mode. An error is
reported if (a) the solution stack is empty; or (b) the instance is in
ITERATE mode.

⊲ int exact_pushable(exact_t *e, int j);

Returns a nonzero value if the column with identifier j can be pushed
into the solution stack of the problem instance e. Otherwise returns
the zero value. An error is reported if (a) a column with identifier j

does not exist; or (b) the instance is in ITERATE mode.

⊲ int exact_can_push(exact_t *e);

Returns a nonzero value if the instance is not in ITERATE mode.

⊲ int exact_num_push(exact_t *e);

Returns the size of the pushed part of the solution stack of the problem
instance e.

⊲ int exact_get_push(exact_t *e, int *j);

Stores the pushed part of the solution stack of the problem instance e

to the array pointed by j, returns the size of the pushed part.

8

4.9 Controlling the search

The following functions are used to control the algorithm that searches for
the solutions.

⊲ void exact_level(exact_t *e, exact_level_t *l, void *p);

typedef int exact_level_t(void *, int, const int *);

Sets the function pointed by l as the level function with user parameter
p for the problem instance e. An error is reported if the instance is
in ITERATE mode. A level function is used to prune the search tree
in the search for solutions. The function is evaluated at each node
of the search tree. It takes as input the user parameter p, the size
of the current solution stack, and a pointer to the solution stack. A
nonzero return value from the level function indicates that the node
is to be traversed; a zero return value indicates that the node and all
its children are to be pruned.

⊲ void exact_filter(exact_t *e, exact_filter_t *f, void *p);

typedef int exact_filter_t(void *, int, const int *, int);

Sets the function pointed by f as the filter function with user param-
eter p for the problem instance e. An error is reported if the instance
is in ITERATE mode. A filter function is used to restrict the columns
considered in the search for solutions. The function is evaluated for
all non-conflicting column identifiers after a new column identifier is
pushed into the solution stack. The return value of the function de-
termines whether the given column identifier should be regarded as
conflicting. A nonzero return value indicates that the candidate col-
umn is non-conflicting; a zero return value indicates that the candidate
column is conflicting and is to be ignored. The filter function takes
as parameters the user parameter p, size of the current solution stack,
pointer to the stack and the identifier of the candidate column.

The problem instance is in ITERATE mode when level and filter functions
are invoked, with one additional restriction. Namely, an error will result
if either exact_solve or exact_reset_solve is invoked for the current
problem instance within a level or filter function.

5 Command-line interface

The program solve provides a plain command-line interface to libexact. The
program is invoked with

solve [command] [file]

where both the command and the file argument are optional. There are two
available commands:

9

-l or --list Lists all the solutions (default).
-c or --count Counts the number of solutions.

When no file argument is given, the input is read from the standard input
stream; otherwise the given file is consulted for input. All normal output is
printed to the standard output stream. Errors are signaled by printing an
error message to the standard error stream and terminating with a nonzero
exit status.

5.1 Input format

The input consists of a sequence of lines of the following types.

⊲ A row is declared with a line of the form

r 〈i〉 [bi]

where i is the row identifier (an integer) and bi is the associated con-
straint (a positive integer). The parameter bi may be omitted, in which
case bi = 1 is assumed.

⊲ A column is declared with a line of the form

c 〈j〉 [uj]

where j is the column identifier (an integer) and uj is the associated
upper bound (a positive integer). The parameter uj may be omitted,
in which case uj = 1 is assumed.

⊲ A 1-entry in the matrix [aij] is declared with a line of the form

e 〈i〉 〈j〉

where i is a row identifier and j is a column identifier. Each identifier
must be declared before it may appear in an entry declaration.

⊲ A column may be pushed into the solution stack with a line of the
form

p 〈j〉

where j is a column identifier. No row, column, or entry declarations
are permitted after a push.

The character # indicates a comment; any input after a comment character
is skipped until either a newline or the end of file is encountered.

10

5.2 Output format

Each solution of the input instance is output by printing the associated
solution stack. The contents of the stack are printed as a list of column
identifiers, separated by spaces and terminated by a newline.

5.3 An example

The example given in Section 1 can be input to solve as follows.

r 1

r 2

r 3

r 4

c 1

c 2

c 3

c 4

c 5

e 1 1

e 1 2

e 1 5

e 2 1

e 2 4

e 3 2

e 3 5

e 4 1

e 4 2

e 4 3

Further examples can be found in the files examples/solve-input*.

Acknowledgments

The authors thank Patric Österg̊ard and Jukka Suomela for comments and
useful discussions. Research leading to the development of libexact was sup-
ported in part by the Academy of Finland (Grant 117499), the Graduate
School in Electronics, Telecommunications and Automation (GETA), and
the Foundation of Technology, Helsinki, Finland (Tekniikan Edistämissäätiö).

11

libexact User’s Guide
Version 1.0

Petteri Kaski, Olli Pottonen
HIIT Technical Reports 2008-1

This technical report is the user’s guide to libexact,
a software library for solving combinatorial exact
covering problems.

The Helsinki Institute for Information Technology HIIT (in English)
Tietotekniikan tutkimuslaitos HIIT (in Finnish)

The Helsinki Institute for Information Technology HIIT conducts world-class
research on future information technology.

Its research ranges from fundamental methods and technologies to novel
applications and their impact on people and society.

HIIT’s key competences are in Internet architecture and technologies, mobile
and human-centric computing, user-created media, analysis of large sets of
data, and probabilistic modeling of complex phenomena.

http://www.hiit.fi

HIIT is a joint research institution of
Helsinki University of Technology (TKK)
and the University of Helsinki (UH).

HIIT Technical Reports 2008-1

ISBN 978-951-22-9488-6 (printed)
ISBN 978-951-22-9489-3 (electronic)
ISSN 1458-9478 (electronic)

r1-kansi-1.indd 1r1-kansi-1.indd 1 27.6.2008 14:27:5827.6.2008 14:27:58

