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Abstract—Distributed Hash Tables (DHTs) provide a useful
key-to-value lookup service for many Internet applications.
However, without additional mechanisms DHTs are vulnerable
to attacks. In particular, previous research showed that Chord
is not well resistant to malicious nodes that joined the DHT.
We introduce the cyclic routing algorithm as an extension of
Chord (CR-Chord). Using simulations we compare the lookup
availability of Chord and CR-Chord. The results suggest that
CR-Chord improves the lookup availability on the average by
1.4 times. When the number of malicious nodes is small, such as
5%, CR-Chord has almost twice lower lookup failure rate.

I. INTRODUCTION

Nowadays Distributed Hash Tables (DHT) are a part of

many peer-to-peer (P2P) applications in the Internet. To

mention a few examples, DHTs are used to track the up-

load/download ratings in Bittorrent and resolve host identifiers

to IP addresses for Host Identity Protocol (HIP) [1]. Each DHT

node maintains a routing table of its neighbors containing node

identifiers (IDs) and IP addresses. The main service provided

by DHTs is routing a lookup query for a certain key to a DHT

node that stores the value for that key.

As Internet applications increasingly depend on DHTs to

operate, DHT should be resilient to all kinds of attacks. One

of the most dangerous scenarios is when adversaries are able

to become a part of DHT by joining as regular nodes. Then

attackers can corrupt, drop, or misroute lookup messages. We

restrict our study with dropped lookups only.

Let lookup failure rate be the probability that an arbitrary

lookup is dropped. Complementary, lookup availability is the

probability that a lookup arrives at the destination. Several

techniques for improving lookup availability in the presence of

malicious nodes were proposed, including iterative routing and

lookup progress monitoring [2], [3], self-certifying data [4]–

[6], routing failure tests and root verification [6], [7].

We propose cyclic routing (CR) [8] as a way to enhance

robustness of existing DHTs in the presence of malicious

nodes. In this paper, we focus on integration of cyclic routing

with Chord [9], which is one of the first and still most popular

DHTs.

In CR-Chord, a node maintains a collection of cycles

additionally to its finger table. A cycle is a path that starts

from the node to its finger, then runs through the network

and returns to the node. Only IDs of cycle nodes, but not IP

addresses, are stored. Cycles present global knowledge about

good paths in a DHT. If there is a cycle containing a node

close to the destination, the message is sent along this cycle.

Otherwise, Chord is used to select the next hop.

We implemented CR-Chord as an extension of the MIT

Chord simulator. With simulations, we analyzed and compared

the Chord and CR-Chord lookup availability. The results

suggest that CR-Chord improves the lookup availability by

1.4 times on the average.

The rest of the paper is organized as follows. Section II

provides background on DHT security and defines the problem

of dropped lookups. Section III describes the CR-Chord algo-

rithm. In Section IV, we define our simulation methodology.

Section V explains the simulation results of CR-Chord vs.

Chord. In Section VI, we summarize the most important

findings and experiences with CR-Chord.

II. BACKGROUND AND MOTIVATION

A. DHT Routing

Consider a DHT consisting of N nodes. Node IDs are

assigned from an identifier space with a distance metric. Each

node s maintains a routing table Ts of entries (u, IPu), where

u is a neighbor and IPu is its IP address. Hence, s forwards

messages to u via the underlying IP network. A message to a

destination node d goes sequentially to nodes whose IDs are

progressively closer to d according to the distance metric. If

v ∈ Ts then s can forward a message to v forming the one-hop

path s → v. Routing from s to d takes several hops forming

a multi-hop path s →+ d.

According to [8], DHT routing is divided onto global and

local parts. In global routing, a message is delivered close to

the destination. In local routing, the destination is at a nearby

node. The reasons for division are as follows. (A) Since a node

is responsible for the keys closest to its ID, let a lookup mes-

sage arrive to a node close to the key. (B) Various replication

techniques support routing into an area of neighboring nodes.

(C) A DHT node knows its neighborhood well keeping close

nodes to its routing table when possible. Obviously, global

routing is more vulnerable to attacks.

DHT routing is either iterative or recursive. With iterative

routing each node on the lookup path returns the next-hop

node v to the querying node. The latter then contacts v

to iteratively get closer to the destination. With recursive

routing each node forwards lookups directly to the next hop

nodes, and the querying node receives a response from the

destination. Iterative routing is more secure since a querying
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node can control the routing progress. Nevertheless, more

network resources are consumed, and iterative routing is not

possible when a querying node cannot directly contact some

nodes on the path, e.g., due to NATs. In this paper, we consider

recursive routing only.

The lookup availability depends on the number of alter-

nate paths between a source and destination [3], [10], [11].

The more paths, the more chances to go around malicious

nodes. However, a mechanism for finding paths consisting of

good nodes is needed. The straightforward approach exploits

multi-path routing when nodes multicast messages to several

neighbors [6], [12]–[14]. It has two disadvantages. First, a

lot of duplicate messages are generated; many of them are

redundant due to the local selection (non-optimal) of alternate

paths. Second, in some DHTs alternate paths converge [10],

[13], [15], and bypassing malicious nodes becomes impossible.

B. Chord

Chord [9] uses an identifier circular space of n-bit integers

(modulo 2n), and participating nodes form a ring taking IDs

from [0, 2n − 1]. A node forwards messages in clockwise

direction. The distance ρ(u, w) is length of the clockwise ring

arc between u and w. Key k is assigned to the first node whose

ID is equal or follows k clockwise.

A Chord routing table for a node s consists of three types

of neighbors: (1) successors, (2) fingers, and (3) predecessors.

Successors and predecessors are several closest nodes to s,

clockwise and counterclockwise, respectively. Successors are

node’s short-distance contacts aiming at local routing. The ith

finger of s is the node that succeeds s by at least 2i−1 on the

ring, where i = 1, 2, . . . , n. Fingers are node’s long-distance

contacts aiming at global routing. Predecessors are mainly for

routing table maintenance.

In a lookup for a key k, each node finds the closest

preceding neighbor v. When v is a finger, each hop at least

halves the distance. Eventually, a lookup arrives at the node

whose immediate successor is responsible for k.

Basic Chord restricts a finger table with n entries. They

are updated systematically. More efficient routing is achieved

when a node can keep additional fingers having more knowl-

edge about the network [16]. Let naf denote the number

of additional fingers. When Chord occasionally discovers a

node, it is inserted as an additional finger. Periodically, Chord

removes fingers that have not been used.

C. Attacks by Dropping Lookups

In attacks on routing a malicious node drops messages,

modifies them, or forwards incorrectly. We consider only the

case of dropped lookups. Such a lookup fails to reach the

destination, and no response is sent.

Dropped lookups concern routing security as well as fault-

tolerance. In recursive routing detection of lookup failures

is more difficult than in iterative case. Dropped lookups are

harder to reveal compared to incorrect lookups; a querying

node has no response, and the lookup validity cannot be

checked. In fact, only straightforward timeout techniques

detect such failures.

Multicast mitigates dropped lookups. Instead of the only

next-hop, a node uses several neighbors to forward a message

(several alternate paths). The efficiency, however, depends on

the number of disjoint paths m [3]:

fm ≤ Pr(lookup failure) ≤
(
1 − (1 − f)l

)m
, (1)

where f is the fraction of malicious nodes (uniform distribu-

tion), l is the number of hops in a lookup.

Eq. (1) is valid for any DHT, but Chord is more sensitive

than many others. Its finger selection is restrictive, and the

only node that immediately succeeds s + 2i−1 may be the

ith finger. This is avoided in randomized-Chord [15], [17],

where the ith finger is taken randomly from [s + 2i−1, s + 2i).
Moreover, introducing additional fingers allows s to know

several neighbors in [s + 2i−1, s + 2i).
In Chord, any path s →+ d goes through p, the d’s

immediate predecessor [3], [10], defining the so called shield

problem. Although Chord has alternate paths s →+ p → d,

they are not disjoint, and p becomes a single point of failure

for all lookups to d. Therefore, Chord satisfies Eq. (1) only

for m = 1, and the lower bound can be refined1 [10]:

1 − (1 − f)2 ≤ Pr(lookup failure) ≤ 1 − (1 − f)l. (2)

Multicast helps even when there are no disjoint paths. How-

ever, the problem is in finding a good path among available.

DHT routing works locally, and a node just selects several next

hops without much knowledge about the remaining paths. In

this paper, we offer a more systematic way that uses the results

of previous lookups. Having a path that a successful lookup

followed lately, a node uses it for subsequent lookups. This

idea can be implemented using the concept of cyclic routing.

D. Cyclic Routing (CR)

We follow [8] where CR was originally proposed. Let a

node s send a message to a node d (s →+ d). Then d replies

to s (d →+ s). The paths form the cycle s →+ d →+ s.

Taking intermediate nodes, c =
(
s → v1 →+ v2 →+ · · · →+

vl−1 →+ s
)
, where v1 ∈ Ts (direct IP contact). Nodes v1,

. . . , vl−1 may represent some but not all the nodes visited.

Let each node s maintain a collection of cycles addi-

tionally to its routing table Ts, Cs = {c1, . . . , cq}, where

cj = (s → vj,1 →+ · · · →+ vj,l−1 → s) for j = 1, . . . , q.

The collection Cs is a network cyclic structure known to s. A

node constructs the remaining route using the cyclic structure

when appropriate. Otherwise, the underlying DHT is called to

find the next-hop node. Algorithm 1 shows the details; it is

executed at every node u 6= d of s →+ d.

A simple reactive strategy is used for constructing cycles.

When receiving a successful lookup response, s keeps the

cycle if it is efficient (e.g., a low number of hops). The

underlying DHT facilities are used more optimally; only good

and efficient paths are collected among available ones. Note,

1This lower bound is valid for N ≥ 16.
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Algorithm 1 Cyclic routing a message to a node d.

Require: Message p arrives at u 6= d.

The node u maintains Tu and Cu.

Find c ∈ Cu such that

c =
(
u → v1 →+ d̃ →+ u

)
where d̃ is close to d;

if c is found then

Let the next-hop node v be v1;

else

Find the next-hop node v ∈ Tu according to the under-

lying DHT;

end if

Forward p to v;

however, that the strategy should be considered as a catalyst;

it fails when the underlying DHT cannot produce good paths,

and another way for constructing cycles is needed.

III. INTEGRATION OF CYCLIC ROUTING WITH CHORD

Algorithm 1 works on top of any DHT. In this section, we

adapt cyclic routing to the Chord DHT. The resulting system

is called CR-Chord and follows Algorithm 2.

Each node s maintains a cyclic structure Cs exploiting

regular Chord lookups. Let s initiate a lookup for a key k.

The message is delivered to the destination d according to

Algorithm 2 The CR-Chord pseudocode.

Require: A node u receives a lookup packet p for a key k.

Let (v1, ... vmd
) be the closest to k fingers in Tu

if u = s then

Send secondary lookups to (v1, ... vmd
) {Multicast}

end if

Let cp be a cycle piggybacked in p (if any)

cp = BestCycle(Cu ∪ {cp}, k)
vcycle = NextCycleHop(cp, k)
if vcycle 6= ∅ then

Piggyback cp into p

Send p to vcycle {Forward along the cycle}
else

Send p to v1 {Forward via the underlying Chord}
end if

BestCycle(C, k)
Find c in C such that

CycleDist(c, k) is minimal and CycleDist(c, k) < ∞
return c if found, and ∅ otherwise

NextCycleHop(c, k)
Find in c the closest node v to k such that

v ∈ Tu and ρ(v, k) < ρ(u, k)
return v if found, and ∅ otherwise

CycleDist(c, k)
Find in c the closest node d̃ to k such that ρ(d̃, k) < ρ(u, k)
return ρ(d̃, k) if found, and ∞ otherwise

Chord routing. Then d sends an acknowledgment to s. All

nodes on the path s →+ d →+ s form a cycle c.

There are two types of lookup messages in CR-Chord,

primary and secondary. Primary lookups may exploit cycles.

Secondary lookups are used for constructing cycles and do

not use cycles. Both lookup types allow finding requested

documents. A source sends a primary lookup and multicasts

secondary lookups with the multicast degree md. Since at

every node cyclic routing is not applied to secondary lookups,

cycles reflect good paths available in a regular Chord network.

Although the lookup success is our primary goal, CR-Chord

remains efficient by storing only those cycles that satisfy the

performance criterion. Let l be the number of hops in c and

fs be the number of fingers at s. Then c is stored when

l ≤ kh min(fs, n), (3)

where min(f, n) approximates log2 N (the average number

of hops in a Chord cyclic path s →+ d →+ s), kh is a

tradeoff parameter between performance and security. In our

simulations, we allow kh = 2 for bypassing malicious nodes.

At each step, a node u should select a next-hop v to

forward p. There are three options. (1) A cycle cp piggybacked

at p is used by u for routing. (2) A better cycle is available

in Cu. (3) None of cycles in Cu ∪ {cp} is appropriate, and the

Chord-provided choice is used.

In Algorithm 2, u calls BestCycle to decide either to use

the previously fixed cycle cp or there is a better cycle in Cu.

The criterion is the closeness according to the Chord distance ρ

(see CycleDist). If a cycle contains a node d̃ that is closer to k

than u, then the cycle is appropriate. Therefore, u searches for

the best cycle among appropriate ones. When no appropriate

cycle exists, u simply performs regular Chord forwarding.

Otherwise, u finds in cp the finger vcycle that is closest to

k, piggybacks cp into p, and forwards p.

A cycle piggybacked into a packet does not consume much

space. Chord node ID is 160-bit long (20 bytes). In a Chord

network of 106 nodes, the cycle length does not exceed 20 with

high probability (log2 106 < 20), which results in 400 bytes-

long cycles. IP packets with a typical Maximum Transmission

Unit of 1500 bytes can easily include such a cycle. Number

of cycle nodes piggybacked into a packet can be reduced

by storing not a full cycle, but a contiguous subset of its

nodes. After a lookup traverses all these nodes, according to

Algorithm 2 it will follow the regular Chord algorithm until

it finds a new cycle or reaches the destination.

IV. SIMULATION METHODOLOGY

A. Attack model

Let M = fN be the number of malicious nodes, where

0 ≤ f < 1 is the malicious nodes fraction (further for

readability we express f as percentage). Then G = N − M

is the number of good nodes. Malicious and good nodes are

distributed uniformly in the Chord ring.

Malicious nodes attack the network by dropping lookups.

Since such a node pretends to be good as much as possible,

we assume that it processes correctly all routing maintenance
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traffic. Otherwise, its malicious activity can be detected easier.

To some degree this behavior is similar to a faulty or over-

loaded node; its malicious but imperceptible activity includes

the following.

1) Dropping lookup and acknowledgment messages (no

forwarding).

2) Processing data placement requests as a good node but

no real data are stored.

3) Ignoring lookup requests for data items for which the

node is responsible.

Without loss of generality we also assume that malicious nodes

do not send lookup requests.

We assume that the network has reached a stable state where

data items are distributed uniformly among nodes. If any data

happen to be at a malicious node then the data are lost. There

are no more data insertion and deletion. Routing maintenance

goes as if all nodes are good.

In this stable state the network provides the lookup service

for data by keys. A random good node u queries a lookup

for a given key k. Assuming that u selects k uniformly, the

lookup failure and success rates characterize the availability

of the lookup service.

B. Simulation scheme

Our simulation of a Chord network with malicious nodes

follows Algorithm 3. We used the MIT original Chord simula-

tor (http://cvs.pdos.csail.mit.edu/cvs/sfsnet/simulator/) for net-

work sizes N = 1000, 2000, 3000 and ID space with n = 24.

Variation of N provides a more adequate analysis of the

lookup availability [10].

For every value of N , the fraction of malicious nodes f

varies from 5% or 10% up to 50%; the increment step is either

Algorithm 3 Simulation steps

1. Initially a good network. A network of G good nodes is

constructed. Nodes are joining randomly.

2. Data placement. D data items are distributed in a good

network. In all simulations D = 100N .

3. Introducing malicious nodes. M malicious nodes join the

network at the same time.

4. Serving lookups. L requests are performed. For a request a

pair (u, k) is selected randomly, where u is a good node and

k is the key for a data item stored at step 2. There are two

phases, Stabilization and Analysis, L = Lstab+Lrate requests.

Stabilization (for CR-Chord only). Good nodes initiate

Lstab requests without multicast. The requests are used for

constructing cycles but they are not counted in the lookup

availability estimation.

Analysis. Good nodes initiate Lrate = 0.01N2 requests.

They are analyzed for the success or failure. In CR-Chord,

a request induces one primary lookup and md secondary

lookups. In Scenario 7, churn of both good and malicious

nodes is performed during this phase.

5 or 10. When varying N , parameters D (Step 2) and Lrate

(Step 4) are proportional to N and N2, respectively.

The MIT simulator implements the basic Chord [9]; the ith

finger of s is the first node in [s + 2i−1, s + 2i) for i =
1, 2, . . . , n. The randomized-Chord [15], [17] would lead to

better results since nodes have more freedom in selecting

fingers, and more good paths are available.

We enhanced the MIT simulator with CR-Chord implemen-

tation (see Algorithm 2 above). In our version, the size of Cs

is unbounded and no maintenance for cycles is implemented.

It does not, however, affect the results much. First, the attack

model assumes a stable network. Second, the number of cycles

constructed per node is moderate or even small for large M

(see Fig. 10, 11 and 12). Note that in practice the maintenance

cost for node IDs is less than for fingers since the former

(i) does not involve expensive IP address maintenance and

(ii) uses piggybacking to regular lookups.

Table I summarizes our simulation scenarios. Each scenario

consists of two parts, for Chord and CR-Chord, respectively.

Each part takes ten executions of Algorithm 3 for averaging.

C. Churn model

To assess the CR-Chord behavior in a dynamic environment

we introduce churn. In simulations, nodes join and leave the

network at a constant rate R. At the same time good nodes

generate lookup requests. The ratio of good and malicious

nodes joining network (parameter f ) is preserved constant;

each join event is accompanied by leave event.

This churn model comprises only dynamics of nodes, not

documents. The latter are inserted before churn starts. During

churn, documents are moved to appropriate nodes. When a

node joins the network it acquires from its successor all the

documents it becomes responsible for. When a node, either

good or malicious, leaves the network it hands over all its

documents to the successor. For simplicity we omit a more

realistic model where documents stored at malicious nodes

are lost completely.

According to [9] the churn rate R is the number of

joins/leaves per second. We vary churn rate from 0.01 to

0.2. Note that in our simulations lookups are generated with

interval of 1 second and stabilization of nodes is done every

30 seconds on average. Thus, for boundary values of R each

churn event is performed after every 100 and 5 lookups re-

spectively. Such rates are consistent with the previous studies.

In [18] a node generates lookup every 0.1 second, while churn

events occur at the rate of 0.067 to 8 per second, which

corresponds to a churn event happening every 150 to 1.25
lookups. In [9] for the same lookup generation rate as ours,

churn rate varies from 0.05 to 0.4, which is equivalent to 20
and 2.5 lookups between two churn events.

D. Success and failure types

A request for a key includes a primary lookup and md

secondary lookups. Either of the lookups or both of them can

succeed by reaching the responsible node. To find out the share
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TABLE I
SUMMARY OF SIMULATION SCENARIOS.

Scenario N f Lstab naf md R

Typical simulation configuration

1 1000 5%, 10%, . . . , 50% 0 12 3 0

Requesting data when a responsible node and its immediate predecessor are good

2 1000 10%, 20%, . . . , 50% 0 12 3 0

Variation of the network size, N

3 1000, 2000, 3000 10%, 20%, . . . , 50% 0 12 3 0

Variation of the number of additional fingers, naf

4 1000 10%, 20%, . . . , 50% 0 0, 12, 24, 48 3 0

Variation of the multicast degree, md

5 1000 10%, 20%, . . . , 50% 0 12 1, 2, . . . , 10 0

Variation of the stabilization period, Lstab

6 1000 10%, 20%, . . . , 50% 0, 1000, 5000, 10000 12 3 0

Variation of churn rate, R

7 1000 10%, 20%, . . . , 50% 0 12 3 0.01, 0.02, 0.05, 0.1, 0.2

of each we compute detailed successes and failures metrics.

Table II presents the statistics for Scenario 1.

We distinguish three success cases:

1) Only primary lookup succeeds, all secondary lookups

fail (Primary lookups success);

2) At least one of secondary lookups succeeds, primary

lookup fails (Multicast lookups success);

3) Both primary and at least one of secondary lookups

succeed (Joint success).

The total success rate (Successful requests) is the sum of the

above values. Note that only one (first reached) successful

secondary lookup contributes to the success rate disregarding

of the other md − 1 secondary lookups.

The metrics below show how actively successful primary

lookups (Primary lookups success) use cycles:

1) A successful primary lookup’s cycle was first inserted

at the initiator node (Initiator cycle success);

2) A successful primary lookup’s cycle was first inserted

at an intermediate nodes (Intermediate cycle success);

3) A successful primary lookup does not contain a cycle

(No cycle success).

Besides success metrics we estimate primary lookup failure

rates (Primary lookups failure):

1) The responsible node d is malicious (Primary lookups

failure at responsible node);

2) The predecessor node of a key k is malicious (Primary

lookups failure at predecessor);

3) A primary lookup failed at an intermediate node (Pri-

mary lookups failure in the middle);

There are also two primary lookup failure types that are

solely due to churn and are relevant only for Scenario 7:

1) A document cannot be found at the responsible node

due to churn (Primary lookup document churn failures);

2) A primary lookup failed along the route due to churn

(Primary lookup routing churn failures).

A primary lookup document churn failure happens when the

lookup arrives at the predecessor after the successor leaves the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50

L
o

o
k
u

p
 f

a
ilu

re
s
, 

%

Fraction of malicious nodes, %

Chord
CR-Chord

lower bound

Fig. 1. Lookup failure rate (Scenario 1).

network, but before predecessor is notified about that. Simi-

larly, when a new node joined between the predecessor and

former successor, but the Chord stabilization is not completed.

There is no timeout mechanism to retransmit lost packets.

It leads to the primary lookup routing churn failures. At each

moment a node has a number of requests to forward. If the

node leaves the network, all unsent requests are lost. Similarly,

a primary lookup can fail along the route due to churn since

nodes do not ping fingers before forwarding.

V. ANALYSIS OF LOOKUP AVAILABILITY

For our simulations, Scenario 1 is typical; Table II presents

its key metrics. Other scenarios are focused on particular

aspects of lookup availability. The lower bound of Chord

lookup failure rate is defined in Eq. (2).

A. Basic facts

Fig. 1 confirms [3], [10] that Chord is not well resistant to

presence of malicious nodes. The lookup failure rate exceeds

much the lower bound. The peak is for moderate malicious

cases (20% ≤ f ≤ 35%). For f = 10%, 20%, . . . , 50% the

lookup availability is 32% on average.
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TABLE II
LOCATIONS OF LOOKUP FAILURES IN CHORD AND CR-CHORD (SCENARIO 1).

Percent of malicious
nodes

10% 20% 30% 40% 50%

Chord CR-Chord Chord CR-Chord Chord CR-Chord Chord CR-Chord Chord CR-Chord

Successful requests 6724.9 7958.4 4353.8 5985.4 2673.9 4197.9 1501.1 2617.3 808.2 1518.5

Primary lookups success 0.0 55.3 0.0 88.2 0.0 89.2 0.0 64.8 0.0 39.9

Multicast lookups success 0.0 859.0 0.0 1161.9 0.0 1121.5 0.0 847.8 0.0 534.7

Joint success 0.0 7044.1 0.0 4735.3 0.0 2987.2 0.0 1704.7 0.0 943.9

Primary lookups success 6724.9 7099.4 4353.8 4823.5 2673.9 3076.4 1501.1 1769.5 808.2 983.8

Initiator cycle success 0.0 3287.2 0.0 1912.5 0.0 963.8 0.0 373.3 0.0 137.1

Intermediate cycle success 0.0 1105.8 0.0 626.6 0.0 316.4 0.0 127.9 0.0 45.1

No cycle success 0.0 2706.4 0.0 2284.4 0.0 1796.2 0.0 1268.3 0.0 801.6

Primary lookups failure 3275.1 2900.6 5646.2 5176.5 7326.1 6923.6 8498.9 8230.5 9191.8 9016.2

- at responsible node 743.2 789.4 1037.8 1144.2 1130.6 1300.9 1017.4 1219.0 834.8 1010.0

- at predecessor 814.1 862.5 1375.6 1521.2 1587.0 1817.7 1670.2 1956.0 1601.6 1916.0

- in the middle 1717.8 1248.7 3232.8 2511.1 4608.5 3805.0 5811.3 5055.5 6755.4 6090.2
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Fig. 2. Lookup failure rate at responsible and predecessor nodes (Scenario 1).

The CR-Chord lookup failure rate is lower. For f = 5% it

is 1.77 times less than for Chord (10.4% and 18.4% respec-

tively). In contrast to Chord, the difference with the lower

bound monotonically grows when increasing f . The lookup

availability of CR-Chord is 45% on average. Comparing with

basic Chord, CR-Chord has 7–16% better absolute lookup

availability; the best result is for moderate malicious cases.

On average CR-Chord performs 1.4 times better; the absolute

effect is 13%. For 50% of malicious nodes lookup availability

of Chord and CR-Chord is 8.1% and 15.2% respectively; thus

for big values of f lookup availability is almost doubled.

A lookup fails either at a responsible node, at its immediate

predecessor, or in the middle of the route. The lower bound

reflects the first two failures. However, a request can fail

earlier even having malicious responsible node or immediate

predecessor, and the actual failure rate in Fig. 2 is below the

lower bound.

According to the widespread opinion the shield problem is

most essential for Chord lookup availability. The last rows in

Table II show, however, that failures in the middle constitute a

comparable part. It means that a solution to the shield problem

does not necessarily lead to high lookup availability.

In fact, the shield problem relates to local routing but
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Fig. 3. Lookup failure rate when no failures at responsible node and
predecessor (Scenario 2).

failures in the middle affect global routing. CR-Chord has

more failures at responsible nodes and immediate predecessors

than Chord (average absolute difference is 3%) because of

reducing failures in the middle (average absolute difference is

7%). Consequently, CR-Chord optimizes global routing.

Scenario 2 provides further clarification. Any request sat-

isfies two extra requirements: 1) it is for data stored at a

good node and 2) its immediate predecessor is also good. The

scenario focuses on global routing since all lookups can fail

only in the middle. Fig. 3 shows the results; Scenario 1 is for

comparison. Chord suffers much from failures in the middle.

In contrast, CR-Chord reduces such failures up to 3–4 times.

Most failures in Chord happen at the few first hops, see

Fig. 4 (all failed lookups are 100%; cases for f 6= 20%
are similar). CR-Chord routes better around malicious nodes,

and less failures happen at the beginning. It is yet another

confirmation of optimized global routing in CR-Chord.

B. Variations

Previous research showed that lookup availability varies for

different network sizes [10]. To validate how this affects CR-

Chord we ran scenario 3 simulations that estimate lookup

availability for different values of N (Fig. 5). Clearly, growing
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N increases the number of hops in lookups, and the lookup

failure rate becomes higher (see also Eq. (1)). However

since CR-Chord improves global routing, the effect of higher

number of hops is mitigated by use of cycles. This is proved by

lookup availability ratio. For N = 3000 the lookup availability

of Chord and CR-Chord is 25% and 39% respectively. Thus

CR-Chord performs 1.56 times better than Chord, while for

N = 1000 if does only 1.4 times better. The failure rate seems

to grow sublinearly, and the reason is O(log N)-paths.

Scenario 4 focuses on the effect of additional fingers

(Fig. 6). Increasing naf converges the failure rate to the lower

bound. However, introducing too many fingers does not help

much; doubling naf improves only by a constant.

Scenario 5 aims at improving the lookup availability by

multicast (Fig. 7). Basic Chord does not support multicast

(md = 0). In CR-Chord, increasing md converges the failure

rate to the lower bound (as with additional fingers). Even small

multicast degree (md = 3) reduces essentially the failure rate.

Further increasing of md does not affect much.

Scenario 6 considers the effect of stabilization period (for

CR-Chord only). Intuitively, with larger Lstab more cycles are

collected before the actual measurement, and better values are

estimated for the lookup availability. Actually, this dependence
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Fig. 7. Lookup failure rate for different multicast degrees (Scenario 5).

is negligible since the average difference in lookup availability

is about 0.1% of Lrate. Hence Lstab = 0 is used in other sim-

ulation scenarios. Moreover, it is an indicator of good dynamic

properties of CR-Chord since only a short stabilization period

is required to adopt cycles to the current network state.

Scenario 7 analyses dynamic properties of CR-Chord under

churn. Fig. 8 shows that Chord is weakly resistant to the high

churn rate R = 0.2. Churn-related losses along the route are

much more prevalent than inability to find target document.

For example, for R = 0.2 and f = 10% Chord has only 35
document failures but 2077 along-the-route loss failures for

the total of 10000 requests.

CR-Chord helps to mitigate the negative effect of churn. The

average difference in number of lookup failures among R = 0
and R = 0.2 is lower for CR-Chord than for Chord. CR-Chord

has less loss along the route. This is yet another confirmation

that CR-Chord improves global routing. For moderate churn

rates CR-Chord has lookup availability very close to that

shown by simulations without churn, which proves its good

dynamic properties.

C. Analysis of cycles

Cyclic routing allows transitions when a node changes the

cycle obtained previously. Fig. 9 shows the cycle usage in
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lookups. Many successful lookups follow one or two cycles

only; the number of lookups with more cycles is essentially

less. It validates that cycle routing is stable to changing a cycle,

and previously fixed cycle is likely to be preserved.

There are lookups without cycles, when nodes cannot find

appropriate cycles because of the small number of cycles at a

node for large f , see Figs. 10–12. Additional fingers (Fig. 10)

and multicast (Fig. 11) do not help much in constructing

cycles. Additional fingers increase the number of constructed

cycles almost uniformly for all f while the multicast efficiency

decreases for large f . Churn has negative effect since some

cycles become incorrect (Fig. 12).

CR-Chord lookup hops are either along cycles or use regular

Chord. Fig. 13 shows the cycle hops share in successful

lookups. For instance, for f = 10% about 16% of lookups

use cycles for 21% . . . 30% of hops. There are no successful

lookups with 1% . . . 10% cycle share of hops.

Many successful lookups do not use cycles. In particular,

they share 45%, 58% and 70% of all successful lookups for

f = 10%, 20%, 30% respectively (not shown in Fig. 13).

Nevertheless, when there are enough cycles available the

essential part of a successful lookup is due to cycles. Thus
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the problem is in cycle construction, not in cyclic routing.

Besides the hop count, the lookup length can be measured

with the Chord distance. The simulation (Scenario 1) identifies

two extreme cases. Either a successful lookup does not use

cycles, or 91% . . .100% of its distance is along cycles (41%,

30% and 19% for f = 10%, 20%, 30% respectively).
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VI. CONCLUSION

We have compared the resilience of CR-Chord and Chord

in the presence of malicious nodes. The lookup availability

of CR-Chord is on the average 1.4 times higher compared

to Chord, and up to two times higher for big number of

malicious nodes. The absolute gain in availability of 7%–

16% is reasonable compared to existing enhancements for

Chord. For instance, zig-zag routing [19] improves the lookup

availability at most by 6% for 10% ≤ f ≤ 50% [10].

The improvement depends on the number of cycles stored

by nodes. For large f and R, cycles are constructed insuf-

ficiently, since our simple construction method is based on

Chord lookups. It aims merely at more efficient usage of

Chord routing facilities. As a result, there are only few cycles

per node and the difference between Chord and CR-Chord is

small.

A core problem of Chord (as of other DHTs) is that lookups

can fail although good paths do exist. In CR-Chord, good paths

are stored for future use, but an efficient method for cycle

construction is needed. This is a topic of our further research.

Weak local routing in Chord does not allow better routing

than dictated by the lower bound in Eq. (2). In CR-Chord,

however, global routing is optimized. Combining CR-Chord

with a mechanism for secure local routing would improve

the lookup availability. Secure local routing seems an easier

problem compared to global routing. Node’s neighborhood is

limited and its exhaustive secure maintenance is possible.

Our simulations suggest that CR-Chord can not only mit-

igate malicious activity, but also compensate routing churn

losses caused by unconcerned nodes routing policy.

We also confirm the idea of combining additional fingers

and cyclic routing [8]. Some nodes have resources to maintain

more fingers than in basic Chord. When inserting a finger is

not possible due to IP addressing restrictions, CR helps in

keeping additional information about the network.
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