
ContextLogger2
- A Tool for Smartphone Data Gathering

Tero Hasu
HIIT Technical Reports 2010-1

Tero Hasu
Helsinki Institute for Information Technology HIIT
Aalto University
PO Box 19800, 00076 AALTO, Finland
Tero.Hasu@hiit.fi

Version 1.0, finalized 26th August 2010.

Helsinki Institute for Information Technology HIIT
HIIT Technical Reports 2010-1
ISBN 978-952-60-3323-5 (electronic)
ISSN 1458-9478 (electronic)

Copyright © 2010 Tero Hasu

ContextLogger2
A Tool for Smartphone Data Gathering

Tero Hasu

Helsinki Institute for Information Technology HIIT
Aalto University

PO Box 19800, 00076 AALTO, Finland
tero.hasu@hiit.fi

Abstract

Researchers often want to gather activity-related data available on mobile phones.
Based on our experience with data collection in numerous field studies, we identified
a number of requirements for a smartphone data logger, and set out to create logging
software fulfilling those requirements. Our software—named ContextLogger2—
now comes close to meeting the goals set for it. Furthermore, it has portable tech-
nologies in its core, potentially serving as a basis for logger implementations for a
variety of platforms.

KEYWORDS: context, data gathering, smartphone

1 Introduction
A mobile phone tends to be intimately associated with its owner, hence providing a useful
window into the owner’s behavior. This has motivated a number of tools capable of
capturing and making available information regarding user activity on the phone and the
context of the phone. A context logger, as we define it, is a software tool that captures
such information automatically and unintrusively on the background.

To avoid getting on the way of normal operation of the phone, typical requirements
for a context logger include autonomy, robustness, and low resource consumption. These
requirements alone are a challenge to logger developers, and the situation is further ag-
gravated by the fact that gaining access to detailed information about a system tends to
require deep system integration, exposing the developer to unfriendly low-level systems
programming languages (usually either C, C++, or Objective-C) and APIs, as well as
variability between systems.

We have implemented ContextLogger2 (CL2), a context logger for Symbian OS. The
Symbian platform is implemented mostly in C++, and its native API overall is of a rel-
atively low level of abstraction. Symbian based smartphones have been on the market
for many years, and we attempt to support a number of different generations of the OS,
spanning dozens of different devices, many with model-specific firmware customizations
and a number of firmware releases.

1

In implementing a context logger we faced the challenges imposed by the platform
and the stringent autonomy, robustness, and unintrusiveness requirements. In this report
we discuss the technologies chosen and technical decisions made in order to address
those challenges. We also cover the overall design of ContextLogger2, the functionality
it provides, and issues relating to its deployment in real-world user trials.

2 ContextLogger2
ContextLogger21 (CL2) is a software tool for smartphone data collection, created pri-
marily for research purposes. The software is available as open source, and runs on
off-the-shelf mobile phones based on Symbian S60 3rd or 5th Edition.

Symbian OS is natively written in a language commonly referred to as “Symbian
C++”, which is valid C++, but with non-standard APIs and idioms. Symbian has been
designed from the ground up for resource-constrained, long-running systems, and these
design goals are a good fit with those of a context logger. Symbian coding standards [14]
advice developers to optimize code prioritizing for reliability, size, and speed, in that
order, and these priorities also align with ours in implementing CL2.

CL2 consists of a logger “daemon” and a set of supporting programs and libraries.
These components together form a system capable of automatic and unintrusive recording
of information regarding the use and context of its host device.

The set of data sources (that we informally refer to as “sensors”) is configurable, and
can include GPS and GSM cell ID readings, keypress times, application focus changes,
etc. The daemon that observes the sensors and logs sensor events is automatically started
at boot, and runs in a background process without direct control by the user. It supports
uploading of collected data to a server at configured intervals.

CL2 is in some sense a successor to ContextPhone [12], which runs on Symbian S60
1st and 2nd Edition, and also includes logging functionality. However, CL2—unlike
ContextPhone—is not a framework for context-aware applications. While CL2 does
reuse some ContextPhone code, its sole focus is on logging rather than supporting other
applications. This specialization has helped in keeping down the size of the codebase,
albeit at the cost of general utility.

One way in which CL2 does achieve wider applicability is in that its codebase is only
partially tied to the Symbian platform. While the sensor code is Symbian C++, the core
of the daemon is portable C with few dependencies on non-standard libraries. C was
chosen as the implementation language as this avoids difficulties in bridging with the
native (C++) APIs, allows for a high degree of control over resource consumption, and
avoids a dependency on laborious-to-port runtimes such as Java ME.

The core of CL2 only has a dependency on a small subset of the widely available
GLib library. We might have chosen to use C++ and its standard library, but there are
platforms for which the standard library is not available (Symbian was one of them for a

1www.contextlogger.org

2

long time), and with C++ there are also questions as to which subset of the language is
actually supported by the compiler that is available for a given embedded platform.

Granted, attempting to make context logger type software portable is not particularly
fruitful, but even partial portability is helpful to developers, allowing some of the system
to be tested natively on the development machine. This flexibility does come at the cost
of increased complexity in configuration management, however, but we deemed it worth
it in at least in the Symbian case, where the test/debug cycle on an actual device can be
quite time consuming due to platform security restrictions in software installation.

3 Requirements
Based on previous experience in using context loggers (such as the one in the Con-
textPhone application suite), the following requirements were specified for ContextLog-
ger2: [8]

1. Capability for non-intrusive, persistent, and robust data logging with updates to a
server with configurable intervals.

2. Data compression and perhaps encryption.

3. Access to necessary services and resources in the phone as enabled by existing
software such as ContextPhone.

4. An XML-based logging format (or some other easily deployable format).

5. Researcher terminal. A terminal for remotely: (1) monitoring logging of data;
(2) triggering recording and data transfer events; and (3) configuring data logging
parameters on an individual user’s phone.

6. A server for all above that is able to handle a user trial with at least 200 users.

7. Optionally, a simple interface for a researcher to examine logged events on a time-
line and perhaps “playback” user’s actions on the display and events in the context.

8. “User experience”, i.e., easy to install and configure on a user’s phone and from
server-side.

The present CL2 implementation meets most of the above requirements, with some
exceptions: there is data encryption (in transit), but no compression; there is remote mon-
itoring of logging, but the data cannot be directly queried remotely (an upload request
can be initiated remotely); the optional requirement for a timeline interface for examin-
ing logged events has not been implemented; and the “user experience” has been found
adequete given sufficient training, but could be further streamlined. The CL2 server setup
has not actually been tested with 200 simultaneous users, but neither does CL2 rely on
any custom server application that might cause scalability problems.

3

4 Features
The core features of ContextLogger2 are:

• Non-intrusive, persistent, and robust data logging.

• SQLite32 based logging format.

• Uploads to a server at configurable intervals as an HTTP POST (SSL optional).

• Local and remote monitoring and control facility.

• Scalable if the servers are (we are using Apache3 and ejabberd4).

• Easy to install and configure (except when things go wrong).

• A number of “sensors” available for Symbian, including:

– Focused application change

– Keypress times

– Profile change

– GSM cell ID change

– GPS sampling

– Call status

– SMS receival/sending

– Bluetooth proximity scan

– Inactivity

– Message from another application

– etc.

4.1 Features for Developers
CL2 features of interest to developers include:

• Builds for Linux are supported, albeit with lots of functionality missing. This is to
allow for more convenient testing.

• Named build configurations are supported by the build system. This is to help
developers achieve repeatable builds.

2www.sqlite.org
3http://httpd.apache.org/
4http://www.process-one.net/en/ejabberd/

4

• CL2 includes an integrated Lua5 programming language runtime. This allows for
use of dynamic and mobile code, and gives developers the option of implementing
some functionality in Lua.

5 Log File Format
The logged data is internally stored and also uploaded in SQLite3 format. The use of
a relational database engine and its associated file format (instead of “flat” text files, as
typically used for logging in the Unix environment, for instance) is due to our desire to
support random access on-device queries to the data.

At the same time, our choice of data format comes with some degree of support for
introspection and backward compatibility. Using SQLite3 tools it is possible to query for
the database schema of a given database file, and it is possible to ask for specific fields
by (table column) name; new fields appearing later do not break “parsing” of data files,
as no particular order is assumed when querying for fields by name.

Support for on-device data queries is only partially implemented at present. The
primary motivation for such a feature is to offer peace of mind to researchers by allowing
them to remotely check (through the remote control facility) that data is being collected
as expected. If this feature was unnecessary, we would likely indeed have opted to just
append logged data to a text file, probably achieving better performance. As we now
are using SQLite3 format for logging, we also use it as our transport format, to avoid
burdening the mobile device with unnecessary work on data conversion.

As to the data contained in the database, we generally prefer to record data in its
original, raw form, and to look for suitable representations and interpretations later, dur-
ing analysis. Adhering to this philosophy we are less likely to perform potentially lossy
conversions that we might later regret.

Naturally raw data tends to be platform-dependent, or rather API dependent. If a
given API is available on multiple platforms, and we source our data through that API,
then likely the acquired data will also have the same semantics across the supported
platforms.

5.1 Sample Data: Status Screen Indicators
While the contents of SQLite3 data files are not directly printable, their content can be
dumped using the sqlite3 command-line tool. For instance, the command
sqlite3 log.db \
"select datetime(unixtime, ’unixepoch’), value, caps \
from indicator_scan;"

might output something like

2010-01-02 13:17:46|3|7

5www.lua.org

5

2010-01-02 14:40:10|2|7
2010-01-02 16:15:37|0|7
2010-01-02 16:17:32|2|7
2010-01-02 16:35:55|0|7
2010-01-02 16:36:19|2|7
2010-01-02 16:42:09|0|7
2010-01-02 16:42:24|2|7
2010-01-02 16:43:48|0|7
2010-01-02 16:43:52|2|7
2010-01-02 16:49:36|0|7
2010-01-02 16:49:37|2|7
2010-01-02 16:52:40|0|7
2010-01-02 16:52:42|2|7
2010-01-02 17:04:23|0|7
2010-01-02 17:04:42|2|7
2010-01-02 17:12:51|0|7
2010-01-02 17:13:20|2|7
2010-01-02 17:17:41|0|7
2010-01-02 17:17:57|2|7
2010-01-02 17:18:27|0|7
2010-01-02 18:10:38|2|7

This is an extract of actual CL2-collected data, where the second value encodes the
phone “Home” screen indicators as a bit field. The data was collected during a train ride,
explaining the frequent toggling of the network availability indicator (i.e., the indicator
value changing between 2 and 0). The fairly raw data at least in this case (where each
entry is essentially a set of three integer values) results in the log entries being quite
compact, although we do no actual compression.

5.2 Sample Data: Call Status
2010-01-05 10:10:58|3|+35850301****|Antti Lindqvist|||
2010-01-05 10:11:16|4|||||
2010-01-05 10:11:16|6|||||
2010-01-05 10:13:46|8|||2010-01-05 10:11:16|0|0
2010-01-05 10:13:46|1|||||
2010-01-06 13:53:56|3|(suppressed)||||
2010-01-06 13:54:08|8||||-2|-8090
2010-01-06 13:54:08|1|||||

Above is an extract of “call status” log data, showing information regarding line status
changes. A single phone call typically has multiple status changes, and this is the kind of
detailed information about the progress of each call that is not available from the “Log”

6

application of the phone. Particularly notable are the call termination reason codes, in
this case 0|0 and -2|-8090, which provide the phone’s and the network operator’s
idea of the reason for call termination.

When analyzing call status logs, something to keep in mind is that CL2 occasionally
misses some status events due to the real-time requirements of handling phone calls tak-
ing a priority over logging. Indeed, CL2 prioritizes unintrusiveness over completeness of
the data.

6 System Architecture
The CL2 logger daemon architecture is pictured in the diagram below.

controller

sensor array

log
database

uploader

remote
control

local
control

key-
press

pro-
file

...

server

client
app

HTTP XMPP

Symbian
client-
server

CL2
logger
daemon

• The controller manages the components that make up the logger daemon. It also
handles some overarching concerns such as failures in critical components or lack
of resources (e.g., disk space on the logging medium), typically by simply shutting
down the daemon.

• Sensor array manages the individual sensors that have been compiled in to the
logger. Sensors may be individually started and stopped. Some sensors also have
dynamic configuration options; the satellite-based positioning update interval can
be adjusted at runtime, for example. A current limitation of the sensor array design
is that there is no “tuple space” type intermediary data storage and propagation
system that would facilitate the implementation of “logical” sensors.

• Log database manages the database file that contains the logged data. The func-
tionality is based on the SQLite3 database engine, which we ported for Symbian as
it was unavailable.6 In-memory databases worked more or less as is, but filesystem
support required some porting effort.

6It seems a shame that while current Symbian OS based devices include Symbian SQL, an SQLite3-
based database engine, the native SQLite3 C API is not exposed in the OS. Recent Symbian documentation
suggests that the Symbian̂ 3 platform release will expose the SQLite3 API.

7

• Uploader is responsible for uploading log database files at configured times. To
receive uploads, we are using a short PHP script. (A sample PHP program showing
how to receive log files can be found from the CL2 website.7) Our script is hosted
by Apache, which should be able to handle a large number of users, especially if
uploads are infrequent. Should there be a very large number of users, one might
consider configuring slightly different upload times for each.

• Local control is a component presently implemented only for Symbian OS. It pro-
vides access to the logger control facility, which is based on the Lua runtime and
a set of Lua bindings to some of the “internal” logger APIs. Any communication
is initiated by client applications, and the communication is based on the Symbian
client-server architecture.

• Remote control makes use of the same control facility as the local control compo-
nent, but instead receives commands via the XMPP protocol. Due to limitations of
mobile networks, the logger daemon must be connected to the (configured) Jabber
server in order for clients to send commands. We are intending to address this issue
by implementing SMS-based triggers for connection initiation. For the time being,
until such triggers have been implemented, the remote control feature is not really
ready for use in the field. However, it already has its uses in testing as it allows
developers to issue commands and queries to the logger programmatically directly
off the PC, or at the very least using a proper keyboard.

The diagram omits some details, such as the components used to access and maintain
information about the static and persistent configuration of the logger. Also, the diagram
does not show the supporting libraries and components, which include:

• A key event scanning library named keyevents. The library was adopted from
JaikuEngine Mobile Client8, and consists of a Symbian animation DLL and an
associated server. The logger includes two variant implementations of the keypress
sensor, and this library is strictly required for the more robust implementation.

• CL2 C++ client library. Provides a C++ API for controlling the logger via its local
control facility.

• CL2 Python client library. A Python wrapper for the C++ based logger control
API.

• Configuration wizard. A Python for S60 script intended to make it easier to set up
CL2 on a “fresh” phone. Not intended for the end user, and no icon for launching
the program is provided.

7http://contextlogger.org/upload.php.html
8http://code.google.com/p/jaikuengine-mobile-client/

8

Figure 1: Launcher.

• Launcher. A Python for S60 application that serves as a “control panel” for the
logger. May be used to launch and stop the daemon, and to set select configuration
parameters, for example. We feel that although this application is very useful for
developers, it is not well-suited for providing end users with control over logging
(for instance to allow them to opt out of being logged in certain situations). We are
considering implementing a simpler and flashier application for that purpose.

• Watchdog. A small and simple “pure Symbian” application for starting up and
restarting the logger daemon. This program is registered with the system for startup
at boot, and exists for the sole purpose of observing the logger daemon process and
keeping it running. If the logger process dies, the watchdog waits for a little while
before attempting to relaunch it.

6.1 Configurability and Logging Control Facilities
Given the goal of unintrusiveness, CL2 was designed to be both configurable and auto-
matically controllable. The configuration and control facilities provide means to avoid
having to ask the user anything.

There are a number of configuration mechanisms in the logger, namely: compile-time
configuration, static configuration (in a configuration file), and dynamic configuration
(maintained in a persistent database). Compile-time configurability exists to make it
possible to optimize the software for a specific trial. Static configuration makes it possible
to have “unchangeable” configuration parameters, primarily for reasons of security; it
is not possible to remotely change the address of the server via which remote control
happens, for instance. Dynamic configuration, in turn, is important in making it possible
to enable/disable battery-hungry sensors as desired, for instance.

Despite all of these configuration facilities, it has never been our idea that the user
should perform complex configuration. Possibly there could be an interface for the user to
see whether the logger is running, to stop and restart it as desired, and perhaps even toggle
the use of power hungry sensors. Otherwise, our approach to logger control is to have
optimization and configuration done pre-trial as much as possible, perhaps performing

9

Figure 2: A remote chat session with the logger daemon.

some automated dynamic control from local and/or remote applications, and to have
researchers rather than users (remotely) observe and control the logger as required. Just
about any XMPP-supporting chat client functions as a “researcher terminal”.

7 Implementation Technologies
In implementing the logger daemon we used (and in some cases created) a number of
technologies that warrant a mention.

7.1 Portable Languages and Libraries
In choosing programming languages and libraries for the project, it was clear from the
start that we were going to have to write at least some of the code in Symbian C++, tar-
geting Symbian APIs. This is because (despite Symbian having been around for many
years) the platform has not enjoyed sufficient popularity among developers to have com-
prehensive language binding coverage for any other language. We elected to use C++ for

10

the Symbian-specific code to avoid having to deal with language integration issues, and
to let sensor developers have the most direct access to the platform APIs.

For implementing platform agnostic functionality we decided to favor portable tech-
nologies for a “write once, target everything” experience. We made this decision to allow
for partial testing of the system on development machines, and also to avoid having to
recode the entire system if we one day wanted to support another target OS.

We should note that we do not consider large and complex virtual machines as portable
technologies. For instance, while Java ME is the only programming option for many
“closed” mobile phones, it is rather hard to port to platforms for which it is not available.
Rather, we decided to focus on smartphones (which by our definition do allow for the
installation of native software), and assume the availability of a C compiler. The avail-
ability of an SDK with a vendor-provided C compiler and at least some of the standard
C library tends to be the norm also for embedded platforms, even if not much else can be
taken for granted when targeting less popular platforms.

Following our decision to favor portability, we proceeded to implement the CL2 core
functionality in ANSI C. We are also using a small subset of POSIX and GLib APIs. Both
APIs are relatively widely supported, and Nokia’s Open C libraries offer good coverage
of both of them.

The decision to have the core system be C code does not necessarily preclude the use
of higher-level languages. In another internal Symbian project we tried out the Vala9 pro-
gramming language without problems. Vala is a language resembling C#, but it compiles
down to C and relies on GLib for its runtime library.

With CL2 we instead decided to try the GOB210 preprocessor, which essentially just
generates the boilerplate code for defining GObject-style APIs, while letting the actual
functionality be defined in plain C. A side benefit is that one need not maintain separate
interface (.h) and implementation (.c) files for an API. Again, we did not encounter any
problem in using GOB2, but neither did we end up using it extensively as we presently
have no particular requirement to define GObject-style APIs in CL2. That said, taking
advantage of the introspection facilities of the GObject object system might be one option
for making C objects scriptable in Lua. (The information available for introspection is
useful, but not necessarily sufficient, which is why there is a GObject Introspection11

effort for maintaining introspection data.)
We are indeed using Lua internally in CL2, but thus far we have created any required

bindings manually. A pleasant surprise for us was that Lua was trivial to port to Symbian
OS, requiring little else than setting some configuration options in the Lua compile-time
configuration file. Lua is written in ANSI C, making use of some of the C standard li-
brary. The primary motivation for adopting Lua was that we wanted some way to specify
commands to the logger remotely. By choosing a full-blown dynamic language inter-
preter for the purpose we ensured that the solution would almost certainly be flexible
enough for any command that we could conceive. Security was another important con-

9http://live.gnome.org/Vala
10http://www.jirka.org/gob.html
11http://live.gnome.org/GObjectIntrospection

11

sideration, and Lua makes it easy to instantiate a runtime that has no access to even the
standard Lua APIs, making it easy for us to choose what APIs we would allow access to
remotely.

SQLite3 was slightly harder to port in that the code in the filesystem layer did require
some porting effort, but apart from that we have been satisfied with the library. SQLite3
is coded in ANSI C, generally relying only on memory related functions from the C
standard library; more platform specific code is cleanly encapsulated within internal in-
terfaces.

While SQLite3 and Lua are commonly used on embedded platforms, and famed for
their high-quality code, a lot of other C libraries have their problems when brought over
to a platform such as Symbian. As many libraries are originally developed for environ-
ments with plenty of memory and/or optimistic memory allocation (a scheme in which
allocations succeed without there being a guarantee of the memory actually being avail-
able when accessed), there tend to be shortcomings in handling out-of-memory (OOM)
situations cleanly. In choosing third-party libraries for use in CL2 implementation we
ruled out any libraries that do not provide at least some mechanism for OOM handling.

SQLite3 diligently checks for OOM errors, and in most cases reports them by return-
ing with the value SQLITE_NOMEM. Lua uses its own exception mechanism to report
OOM errors. In our remote control component we are using the iksemel12 XMPP library,
which by itself does not comprehensively check for OOM errors. It is not difficult to find
seemingly unsafe iksemel code such as the snippet shown below. However, the safety of
the shown code depends on the semantics of the iks_malloc function.
ret = iks_malloc (IKS_CDATA_LEN (x));
memcpy (ret, IKS_CDATA_CDATA (x), IKS_CDATA_LEN (x));

As iksemel does provide a hook for defining custom behavior for iks_malloc, it
can perhaps be regarded as an OOM-safe library, even if it is not immediately obvious.
To achieve safe behavior, one may have iks_malloc cause program termination or a
non-local return upon a memory allocation failure. CL2 presently does neither, and as a
result, we cannot yet regard the remote control component as robust. We are still debating
whether to work on hardening our current remote control implementation or to switch to
a different technology. The downside with the current implementation is that it uses
a custom fork of iksemel that provides an asynchronous interface (which we deemed a
better fit for the logger architecture), but for reduced maintenance effort it would be better
to adopt an XMPP library that is designed to be used asynchronously (e.g., QXmpp13).

7.2 Build Configuration Management System
For repeatable builds, the CL2 logger build system supports uniquely named build config-
urations. Each build configuration is specified in its own file in the variants directory,
and a build “variant” specification essentially consists of a set of (key, value) pairs. Such

12http://code.google.com/p/iksemel/
13http://code.google.com/p/qxmpp/

12

fixed, named configurations are in contrast to the widely-used autotools (autoconf14 et al)
system, in which configurations are host-specific by design.

Logger configurations are specified through a Scheme language based, object-oriented
API. To avoid duplication, a configuration can inherit from another one and override val-
ues. It is also possible for one configuration setting to depend on another one to help
avoid ending up with a nonsensical configuration. The predefined base configuration has
a few options for enabling/disabling individual features, and disabling a feature generally
means that the code implementing it will not even be included in the binary. The idea
here is that if one only includes the features required for a given trial, the logger process
will be more lightweight and there is less to go wrong.

The configuration system is implemented in PLT Scheme, which has recently been
renamed as Racket15. We chose to use Racket as: it includes an extensive library featur-
ing flexible APIs for relevant functionality such as command-line parsing and invoking
external programs; Racket’s module system [9] makes it easier to keep the sometimes sur-
prising complexity of build systems in check; and Racket’s powerful macro system [4]
and other language extension facilities make it possible to define custom build configura-
tion definition syntax if desired. A downside of Racket is that program startup times are
quite long (which is a problem with many VM-hosted languages), but we do not consider
this a significant issue as switching between build configurations tends to be infrequent.

When the configuration system is invoked, naming a build variant, it generates in-
clude files for a variety of languages. The generated files are imported from C and C++
source files as required, and are likewise used by a variety of build scripts to adapt for the
current configuration. CL2 Symbian builds presently support the native Symbian ABLD
toolchain, whereas Linux builds are based on GNU Make.

As found by Kantee et al [5], portable software development can involve the use
of multiple build systems, leading to maintenance overhead and potential errors due to
build settings being out-of-sync. Our configuration system addresses one aspect of this
problem in allowing each configuration to be specified only once. It does not, however,
directly address the specification of exactly what must be built and how in order to pro-
duce an executable corresponding to a given configuration.

7.3 Component Dependency Management System
The CL2 logger is a sizeable application, with a number of configuration options. Build-
ing it may result in the compilation of up to 150 source files (approximately, not counting
header files), depending on the chosen configuration. For linking, one must also specify
all the system and third-party DLLs that the application uses.

To address such complexity, we believe it would be beneficial to have a component
dependency management system which allows one to treat a set of source files as a logical
whole (a “component”). The system should allow one to specify, for each component,
in a modular and reusable way: (1) how to build the component (from which source

14http://www.gnu.org/software/autoconf/
15www.racket-lang.org

13

Figure 3: An imaginary build dependency scenario, albeit inspired by CL2. Ellipses
depict named components, arcs depict (possibly conditional) dependencies, and boxes
depict things that “belong” to a component.

files and with what build options); and (2) what other components it has as dependencies.
Figure 3 visualizes a small example scenario in which the build information for the main
component can be deduced by traversing a tree of dependencies. The dependencies may
be conditional on the current build configuration.

We have started sketching out a dependency management system matching the above
description, and do have an initial, rather primitive design and implementation. The
component specification format is unfriendly, and there is only limited and experimental
adoption of said specifications in the logger codebase. Our current implementation is
based on Racket, making it possible for the system to directly read Scheme-based build
configuration files. It is clear that our current implementation would require more work
in terms of features and convenience before we would consider fully adopting it. We are
also considering alternative designs that better leverage existing work.

The system we envision could probably also be implemented in terms of an existing
build tool. GNU Make, for example, has support for dependency resolution built in, and it
also supports conditional expressions. In considering a Make-based implementation there
are, however, two caveats to keep in mind: (1) to achieve modularity of specifications, one
must split build information to one makefile (or Make include file) per component; and
(2) there are a variety of native build systems [5] not driven by Make, and “simulating”
these in terms of Make requires additional maintenance effort.

If the native (vendor provided) build systems are reliable and provide the desired func-
tionality, it is perhaps more practical to generate input files for them rather than dictate
that the programmer write Make rules for building binaries for all targets, hence requir-
ing considerable knowledge about the native toolchain of each target platform. The Qt
cross-platform application framework’s qmake tool, for instance, takes the approach of
generating platform-native makefiles based on Qt project files. This is also the approach
taken by our current system.

Implementing a component management system in terms of an existing makefile com-

14

piler such as qmake and CMake16 would give us cross-platform support “for free”, but
we have yet to explore the feasibility of such an approach.

A “traditional” way to split systems software into components is as platform-native
libraries, whether statically or dynamically linked. A DLL is the more self-contained
option, with linking information included. Furthermore, there already is a fairly popular
(particularly in the GNOME community) tool, namely pkg-config17, for the purpose
of finding out how to build and link against a DLL. One defines the relevant informa-
tion for a library in a .pc file, and pkg-config can then be used to deduce relevant
build options. Unfortunately, Symbian ABLD does not directly support invoking tools
such as pkg-config to dynamically collect build information, nor is the output of the
tool compatible with ABLD .mmp files. Also, pkg-config is rather geared towards
dynamic linking, and we have found DLLs problematic when targeting Symbian.

Symbian has long had limitations regarding the use of static writable data in libraries
and applications, and this has traditionally been one of the biggest issues when porting
applications to Symbian. More recent releases of the platform do allow static writable
data in applications and optionally in DLLs, but due to a bug in the compiler shipped
with S60 SDKs, with a typical S60 SDK setup it is still not possible to have writable data
in a DLL. (Applications and static libraries do not have this restriction.) DLLs also have
associated runtime overhead. Indeed, we decided that requiring that each CL2 component
be a DLL would be impractical. For a flexible solution a “logical” component must be
able to take on some other concrete form as well.

There is existing work on component systems such as Knit [13] and Koala [3] that
likewise do not require DLL-based components. These systems, however, are focused
on component composition, and deal with component information down to the level of
individual exported and imported symbols. Although we consider this overkill for CL2 at
present, we might consider the adoption of such a system provided it was suitably mature,
and offset the cost of component interface specification by automatically generating C or
C++ header files from component descriptions.

7.4 Code-Generation for Cross-Cutting Concerns
The CL2 logger implements a number of sensors for Symbian, and each sensor has a
number of cross-cutting concerns that must be reflected in a number of places in the
CL2 codebase. We address this through code generation of most of the database access
layer and sensor management code related to each sensor. We specify the information
required by the code generator in a mostly declarative manner, in a custom domain-
specific language (DSL), a sample of which is shown in Figure 4.

16www.cmake.org
17http://pkg-config.freedesktop.org/

15

Figure 4: Specifying the “callstatus” sensor in a domain-specific language.

7.5 Ragel State Machines for Asynchronous Event Handling
The CL2 logger is implemented as an event driven system, and this approach is well
suited for a context logger; to avoid impacting battery life, one wants to just make OS
requests and do nothing until the OS responds. Symbian OS is also event driven through-
out, and its idiomatic way to represent individual tasks is as active objects, i.e. objects
that maintain their own state, and are collectively driven by a built-in thread-specific ac-
tive scheduler. Unlike multitasking solutions based on multiple threads of control (e.g.,
coroutines or preemptive threads), Symbian-style multitasking can result in complex state
machines that obscure the flow of control.

As an experimental way to achieve readable control flow and “free” state tracking,
we included an explicit state machine description in the remote control session establish-
ment code of the logger. The actual state tracking and switching code was then generated
with the Ragel [16] state machine generator, which can generate (among other languages)
ANSI C without dependencies. In this case the end result was a rather trivial, linearly
progressing state machine to track protocol state. The machine does not run to comple-
tion in one go, but rather its progress is driven by the triggering of asynchronous events
corresponding to requests made in the state machine actions.

protocol = connected >SendHeader
features_tag >Authenticate
success_tag >SendHeader
features_tag >Bind
iq_tag >ReqSession
iq_tag >ShowPresence

16

presence_tag >SessionReady ;

The control flow of the Ragel-based protocol description (shown above) is clear, and it
is also possible to automatically render a graphical representation of same (shown below).
There is no need for hand-written switch statements for state tracking.

The one issue that our use of Ragel does not resolve, however, is that of stack rip-
ping [1], which means that any state on the stack must be short-lived due to the require-
ment of frequently returning control to the event loop. Moreover, the programmer must
manually split (or “rip”) each function that might block, as well as its ancestors in the
call stack. [6] In our case we retained the required state in the state machine state struc-
ture, and encoded each of the “ripped” function pieces as state machine actions, which in
Ragel results in somewhat more lightweight syntax than defining a separate C function
for each. In Ragel-generated code all the pieces end up in the same function, with their
selection for execution governed by a switch statement.

Event system driven, formally defined state machines are not new. For instance, the
Qt State Machine framework [11] is designed to support state transitions triggered by
asynchronous events. The difference between our use of Ragel and the Qt framework is
that in the Qt case state machines are defined in C++ and constructed at runtime.

There is also work on addressing the stack ripping issue. Tame [6], for example, is
a solution for C++ that frees the programmer of manual stack management, overcoming
language limitations by including both a C++ library and a source-to-source translator.
There is also work on making it easier to implement Tame-like solutions through the
use of extensible compiler technology. An example of such technology is Xoc [2], an
“extension-oriented” C compiler for which a Tame-like extension has been written.

7.6 Future Work in Technology Adoption: Tools-Assisted Mocking
and Qt Integration

CL2 makes use of libraries (such as Lua, SQLite3, and iksemel) that are—to a large
extent—platform agnostic, due to their data processing oriented nature. Some function-
ality, however, inherently requires a platform-specific implementation (due to platform-
specific hardware drivers, service protocols, file formats, etc.), and CL2 mostly accesses
such functionality via Symbian-specific libraries. This increases the cost of testing and
maintenance. Even where a portable implementation of a library providing a required
service is impossible, that does not mean that separate implementations of a library could
not expose the same interface on multiple platforms.

In many cases porting an API to another platform may be impossible (due to lack
of hardware peripherals, for instance) or at least a lot of work, but one could consider
substituting unportable components with mock objects [15] during testing. Such ob-
jects (components that to some extent simulate the behavior of “real” components) are
presently not included in the CL2 codebase, however. There are tools (such as Google

17

Mock18) to assist in their creation, but one might want to first look for existing libraries
that come “pre-mocked”.

The Symbian platform is presently moving to Qt for its application framework, likely
making it necessary to integrate CL2 with Qt at least for Symbian̂ 4 platform release.
This—in our opinion—is a welcome development, as there is a selection of Qt cross-
platform APIs [10] for accessing phone services (e.g., services providing access to con-
tacts and location information and hardware sensors). There is also a simulation solution
for Qt that customizes some Qt libraries to include interactively configurable and script-
able mock objects for select phone APIs. To take advantage of Qt APIs in developing
sensors for CL2, one should merely need to modify the build scripts and switch to the
Qt event loop instead of the Symbian one. This is because the Qt event loop has been
integrated with Symbian so that it can also handle event dispatch for Symbian native
events.

8 Deployment
For software that may get used in larger user trials, it is quite important for deployment to
be relatively straightforward, lest the installation consume a prohibitively large amount
of time. When installing on people’s personal, existing phones, there also tends to be
emotional pressure to get the installation done quickly and professionally, as each person
will typically be observing the installation process and waiting to get his or her phone
back.

We have thus far polished the deployment process enough for it to be workable in
smaller (20 people or so) trials, even for non-technical deployment personnel with a
small amount of training and “technical support” a phone call away. Had we done larger
trials, we would have likely ended up streamlining the process more.

Ideally, we would just send the user a link to the software, and that software would
come fully configured for the specific user, and automatically install itself and any re-
quired libraries and configuration files. We are not close to this ideal; a currently sup-
ported deployment procedure is outlined below.

The lack of streamlining in the deployment process is not all due to lack of effort,
as Symbian platform security is also to blame. For example, we found out the hard way
(during a trial) that due to Symbian restrictions any watchdog cannot be installed as an
embedded SIS (Symbian Installation Source) file if it is to get started up at boot. This
restriction means that it is difficult19 or impossible to (1) package everything into a single
SIS file and to (2) keep the watchdog separately (un)installable; one must choose one or
the other.

18http://code.google.com/p/googlemock/
19We have not confirmed this, but it might be possible to have a SIS file unpack another SIS file contain-

ing the watchdog, and then, during installation, launch a program that would “directly” install the unpacked
watchdog SIS file, thus working around the restriction.

18

Figure 5: Configuration wizard.

8.1 Suggested Deployment Procedure
Below is one possible CL2 deployment procedure that we have found to work in practice.
Note that this procedure does not consider setting up remote control, nor very large trials
making it necessary to get the software signed by Symbian to lift IMEI code restrictions.

1. Set up the web server and write some PHP code to receive logs.

2. Collect the IMEI codes of the phones and create a Symbian code-signing developer
certificate covering the codes.

3. Do a trial-specific build, and sign it with the newly created certificate.

4. Install the software as SIS package files onto users’ devices. This can be done
without incurring data transfer costs for instance by sending the files from another
phone over Bluetooth.

5. Configure user-specific settings with a wizard. The wizard also supports installing
a server-specific SSL certificate as required.

6. Launch the logger and do an upload to verify installation. Here it is useful to
have some convenient way to check what the most recent uploads to the server are,
perhaps via a web interface from the researcher’s phone.

8.2 Things That Can Go Wrong
There are a number of things that can go wrong during deployment, as we have found. We
list some of these below, but the problem of course is that there tend to also be problems
that one fails to anticipate.

• Incompatible phone. Not everyone knows exactly (and correctly) what phone
model they have, let alone whether it runs Symbian or not.

19

• Platform errors or pre-existing data corruption. At one point, for instance, we
encountered a phone on which the App. manager would crash at launch, making it
impossible to install any software.

• Lack of resources. For example, not enough storage space, or no memory card.

• Developers’ lack of knowledge. An example of this was given above, namely that
of embedded SIS executables not getting started up at boot.

• Misconfiguration. E.g., incorrect access point, or wrong boxes ticked for an SSL
certificate during interactive installation. Even if one realizes that one has made
a mistake, one may not immediately know how to fix that mistake. (For instance,
an SSL certificate cannot be reinstalled without first removing it, and the removal
function is not that easy to find on S60.)

• Transient network errors. One may think that one has misconfigured the system,
when in fact the problem is due to a network malfunction.

• “DLL hell”. An incompatible version of a required library having already been
installed on the phone. There may also already be applications installed that rely
on the incompatible version, and indeed it may be that the incompatible library got
installed with such an application.20

• Some software must be uninstalled before upgrade. The Symbian installer is such
that in some cases only a “clean” install will succeed, and installing on top of
an older version will not result in a working installation, even if it does not get
immediately noticed.

8.3 Future Work for a More “Product-Like” Experience
There are some aspects of CL2 that still reveal its research prototype like nature. Taking
the actions listed below to achieve a more “productized” experience would also ease
deployment.

• Remove dependencies to underutilized libraries (EUserHL, stdcpp, etc.). Each de-
pendency makes deployment harder, as there is no dependency manager on Sym-
bian (unlike on Maemo, for instance). Due to the more research-oriented aspects
of the project, we quite happily tried quite a few libraries, not all of which ended
up being used much in the end.

• Get an SSL certificate signed by a proper CA. Currently we are using self-signed
certificates on our servers, meaning that it is necessary to install a custom certificate
on each phone to enable SSL encryption.

20For example, Nokia Maps 3.04 beta got released with Open C/C++ 1.7, but Open C/C++ 1.7 turned out
to break binary compatibility with version 1.6, and was later withdrawn by Nokia. Worse yet are libraries
that make no attempt to preserve binary compatibility across versions.

20

• Create a proper “control panel” application with a decent look-and-feel, with func-
tionality chosen with the end user in mind. Perhaps the only functions required
would be: Display status, Start logger, Stop logger, and Disable/enable autostart
(at boot).

9 Related Work
There are a number of smartphone context information scanning solutions that typically
focus on (1) logging, (2) streaming data to web services, or (3) serving as middleware for
local context-aware applications. In Table 1 we list software packages that include some
context data collection facility, regardless on whether the collection happens locally (with
possible batch uploads) or by streaming to a server. We leave out “pure” middleware that
by themselves do not collect data.

As seen from the table, ContextLogger2 is the only free open source software (FOSS)
context logger offering for modern Symbian devices that offers tight system integration
(in the sense that it: executes natively; starts up and runs on the background automat-
ically; and supports direct access to native APIs without language interfacing issues).
ContextPhone, for example, has not been ported to S60 3rd Edition, whereas BeTel-
Geuse [7] does not get launched automatically at phone boot time.

10 Conclusion
We have created ContextLogger2, a smartphone data collection tool that runs on most
Symbian S60 based phones shipped to date. The software is freely available, with most
of the code covered by the MIT license. There are few restrictions regarding use and
redistribution.

The software has been found to be quite robust, and a degree of effort has been put into
facilitating testing. CL2 is partially portable, allowing for instance for interactive testing
of the core system and unit testing of individual portable components on the desktop.

CL2 is being actively maintained, with near-term plans for improvement including a
remote control SMS triggering facility and additional sensors (e.g., phone call recording).

In this technical report we have outlined the functionality, architecture, and imple-
mentation of CL2. We have shared our experiences with trying out technologies for
which we identified a need in the creation of software of this kind. We have pointed out
that some of these needs arise merely because of limitations of the Symbian platform,
and hence do not concern context logger development in general.

Acknowledgements
This work has been supported by the Academy of Finland projects Helsinki Privacy Ex-
periment and Context Cues and the HIIT project ContextLogger 2.0. We thank: Antti

21

Name Platforms Language Availability Features
BeTelGeuse Java 1.3,

MIDP 2
Java, Python FOSS ≈10 phone sensors + support for

external sensors over Bluetooth +
higher-level context inference.

CAES PocketPC C++ OSS (un-
maintained)

Experience sampling.

Context-
Logger2

S60 v3–up C, Symbian
C++

FOSS ≈10 sensors, autostart, background
operation, watchdog, batch up-
loads, scripting in Lua.

(Context-
Phone)
Context-
Logger

S60 v1–2 Symbian
C++

FOSS ≈10 sensors, autostart, background
operation, watchdog, batch up-
loads.

IYOUIT S60 v2–3 Python free service ≈10 sensors, background opera-
tion, social networking.

(Mobile Con-
text Toolbox)
Logger

S60 v3 Python OSS by re-
quest

≈10 sensors, autostart.

My-
Experience

WinMo
v5–up

C# FOSS >50 sensors, autostart, batch up-
loads, context-triggered experience
sampling, scripting in XML and
Simkin.

Nokia Simple
Context

S60 Python private beta

Nokia SP360 S60 v2–3 Symbian
C++

private Many sensors, background opera-
tion, batch uploads.

RECON WinMo
v5–up

C# private Experience sampling.

SocioXensor WinMo
v5–up

(.NET) private ≈10 sensors, batch uploads, experi-
ence sampling.

(Zokem) Mo-
bile Media
Tracker

Android,
Blackberry,
iOS, S60,
WinMo

Java, C++ commercial >30 sensors, background oper-
ation, batch uploads, context-
triggered experience sampling.

(Zokem)
Zoki

Android,
Blackberry,
iOS, Java
ME, S60 v3–
up, WinMo

Java, C++ free service Social networking.

Table 1: A summary of various smartphone context data collection software.

22

Oulasvirta for initiating the project and for helpful suggestions regarding this report;
Antti Lindqvist and Antti Salovaara for organizing real-word user testing, and provid-
ing requirements and feedback; Mika Raento for a variety of advice; Petteri Nurmi for
information regarding BeTelGeuse; Hannu Verkasalo for information regarding Zokem
products; and Elina Du for assisting with prototyping.

References
[1] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Coop-

erative task management without manual stack management. In Carla Schlatter Ellis, editor,
Proceedings of the General Track: 2002 USENIX Annual Technical Conference, June 10-
15, 2002, Monterey, California, USA, pp. 289–302. USENIX, 2002. ISBN 1-880446-00-6.
doi:http://www.usenix.org/publications/library/proceedings/usenix02/adyahowell.html.

[2] Russ Cox, Tom Bergan, Austin Clements, Frans Kaashoek, and Eddie Kohler. Xoc, an
extension-oriented compiler for systems programming. In ASPLOS 2008. March 2008.

[3] M. de Jonge. Multi-level component composition. In Jan Bosch, editor, 2nd Gronin-
gen Workshop on Software Variability Modeling (SVM’04), 2004-7-01. Reseach Institute
of Computer Science and Mathematics, University of Groningen, December 2004.

[4] Matthew Flatt. Composable and compilable macros: You want it when? In ICFP, pp.
72–83. 2002. doi:http://doi.acm.org/10.1145/581478.581486.

[5] Antti Kantee and Heikki Vuolteenaho. Experiences in portable mobile application devel-
opment. In Sergio F. Ochoa and Gruia-Catalin Roman, editors, IFIP 19th World Com-
puter Congress, First International Workshop on Advanced Software Engineering, Ex-
panding the Frontiers of Software Technology, August 25, 2006, Santiago, Chile, vol-
ume 219 of IFIP, pp. 138–152. Springer, 2006. ISBN 978-0-387-34828-5. doi:http:
//dx.doi.org/10.1007/978-0-387-34831-5_11.

[6] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense. In Pro-
ceedings of the 2007 USENIX Annual Technical Conference. June 2007.

[7] Joonas Kukkonen, Eemil Lagerspetz, Petteri Nurmi, and Mikael Andersson. BeTelGeuse: A
platform for gathering and processing situational data. IEEE Pervasive Computing, 8:49–56,
2009. ISSN 1536-1268. doi:http://doi.ieeecomputersociety.org/10.1109/MPRV.2009.23.

[8] Antti Oulasvirta. ContextLogger 2.0 project description. Unpublished, 2008.

[9] Scott Owens and Matthew Flatt. From structures and functors to modules and units.
In John H. Reppy and Julia L. Lawall, editors, Proceedings of the 11th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2006, Portland, Ore-
gon, USA, September 16-21, 2006, pp. 87–98. ACM, 2006. ISBN 1-59593-309-3. doi:
http://doi.acm.org/10.1145/1159803.1159815.

[10] Qt Mobility Project 1.0: Qt Mobility Project APIs overview, 2010.

[11] Qt 4.6: Qt reference documentation, 2010.

23

[12] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. ContextPhone: A pro-
totyping platform for context-aware mobile applications. IEEE Pervasive Computing, 4:51–
59, 2005. ISSN 1536-1268. doi:http://doi.ieeecomputersociety.org/10.1109/MPRV.2005.29.

[13] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide. Knit: Component
composition for systems software. In OSDI, pp. 347–360. 2000.

[14] Symbian Developer Network. Symbian OS C++ coding standards, January 2003.

[15] Dave Thomas and Andy Hunt. Mock objects. IEEE Software, 19(3):22–24, 2002. doi:
http://www.computer.org:80/software/so2002/s3022abs.htm.

[16] Adrian D. Thurston. Parsing computer languages with an automaton compiled from a single
regular expression. In Oscar H. Ibarra and Hsu-Chun Yen, editors, Implementation and
Application of Automata, 11th International Conference, CIAA 2006, Taipei, Taiwan, August
21-23, 2006, Proceedings, volume 4094 of Lecture Notes in Computer Science, pp. 285–
286. Springer, 2006. ISBN 3-540-37213-X. doi:http://dx.doi.org/10.1007/11812128_31.

24

Researchers often want to gather activity-related data
available on mobile phones. Based on our experience with
data collection in numerous field studies, we identified
a number of requirements for a smartphone data logger,
and set out to create logging software fulfilling those re-
quirements. Our software — named ContextLogger2 — now
comes close to meeting the goals set for it. Furthermore,
it has portable technologies in its core, potentially serv-
ing as a basis for logger implementations for a variety of
platforms.

Helsinki Institute for Information Technology HIIT
Tietotekniikan tutkimuslaitos HIIT (in Finnish)
Forskningsinstitutet för Informationsteknologi HIIT (in Swedish)

The Helsinki Institute for Information Technology HIIT is a joint research
institution of Aalto University and the University of Helsinki for basic and
applied research on information technology.

Its research ranges from fundamental methods and technologies to novel
applications and their impact on people and society. HIIT’s key compe-
tences are in Internet architecture and technologies, mobile and human-
centric computing, user-created media, analysis of large sets of data and
probabilistic modeling of complex phenomena.

HIIT works in a multidisciplinary way, with scientists from computer, natu-
ral, behavioural and social sciences, as well as from humanities and de-
sign. The projects are conducted in collaboration with universities, com-
panies and research institutions.

http://www.hiit.fi

HIIT Technical Reports 2010-1

ISBN 978-952-60-3323-5 (electronic)
ISSN 1458-9478 (electronic)

