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Abstract 

The decades of research in motion planning have resulted in numerous algorithms. Many of the 
most successful algorithms are randomized and can have widely differing run-times for the same 
problem instance from run to run. While this property is known to be undesirable from user’s point 
of view, it has been largely ignored in past research. This paper introduces the large run-cost 
variance of randomized motion planners as a distinct issue to be addressed in future research. 
Run-cost variance is an important performance characteristic of an algorithm that should be 
studied together with the mean run-cost. As a positive example of possibilities for reducing the run-
cost variance of a randomized motion planner, simple heuristic techniques are introduced and 
investigated empirically. 

 



 

1. Introduction 

Motion planning capability is an essential property of any autonomous robotic system [1]. When 
formulated as the classical “mover’s” problem, it can be shown that the problem is PSPACE-hard 
[2]. The most basic variation of the problem assumes that all obstacles are known and static 
during the planning and execution of the motion for the movable device. A large number of motion 
planning algorithms have been presented for this and other variations of the problem [1][2][3]. Due 
to the complexity of the problem, practical planners must be based on heuristic and incomplete 
algorithms. 

The complexity of the problem guarantees that for any algorithm there exists a problem instance 
that exhibits the intractable worst-case behavior. Heuristics can take advantage of assumed 
regularities in the problem, but when the heuristics is known, the construction of a “deceptive” 
problem instance exhibiting worst-case behavior is usually quite straightforward. Relaxing the 
completeness requirement has allowed the development of randomized motion planners that are 
complete only in probabilistic sense. Randomized planners use either some randomized search 
procedure, e.g. [16][22], or random sampling of the configuration space (cspace) for subgoals in 
combination of local search between the subgoals, e.g. [14][18][28][19]. 

The current motion planners that rely on configuration space samples for subgoals are very 
sensitive to the selection of the particular sampling sequence, be it a particular segment of a 
pseudo-random number sequence or a particular type of a quasi-random number sequence. 
Structured sampling techniques, e.g. [6][8][9], usually rely on assumptions on the task structure 
that are easily violated [20]. Since randomized algorithms tend to break the task structure, they are 
usually robust against “deceptive” inputs. However, this robustness comes at the expense of being 
able to reliably estimate the length of a particular run of the algorithm due to run-cost variance. 

This paper introduces the large run-cost variance of randomized motion planners as a distinct 
issue to be addressed by the research community in the future work. Variance should be 
accounted for in the research methodology, especially if it is empirical [30]. If a new or variant 
randomized motion planner is presented, appropriate descriptive statistics should be presented to 
describe the run-cost variance of the proposed motion planner. Users are known to find run-cost 
variance distressing [25], therefore motion planners with low variance are preferred. The size of 
variance is also directly involved in comparisons between various planners or components of 
planners, since large variance can invalidate the statistical significance of an observed difference 
in average performance. 

Furthermore, in order to demonstrate prospects for addressing the variance problem, simple 
techniques with variance reduction effect are presented. The techniques are heuristic in nature 
and their effects are verified empirically. The techniques are applicable to motion planners that use 
samples in the configuration space as subgoals to be connected with a local search procedure. In 
essence, they make the local search procedure more powerful when it is observed that a large 
number of samples or local planner calls are needed for the solution and thus the particular 
sampling sequence cannot be relied to be successful for the task at hand. Since the search 
procedure used here is deterministic, this can be seen as shifting the balance of computation away 

 



 

from the randomized sampling procedure to the deterministic search procedure. 
The next section presents a brief overview of randomized motion planners. Section 3 introduces 

PRM motion planner variants with heuristics that improve performance both in the expected run-
cost and the run-cost variance. Section 4 describes the empirical methodology used in this paper 
and section 5 presents the results. Finally, section 6 presents the conclusions and issues for future 
work. 

2. Previous Work 

Randomization techniques have been introduced into motion planning algorithms in order to avoid 
expending large amount of computation when a deterministic planner exhibits the worst-case 
behavior. Classical cell decomposition methods construct a cspace representation for the entire 
cspace although only a part may be necessary for the construction of the solution. Heuristic 
strategies can be used to restrict the construction of the cspace representation to promising areas, 
e.g. [10][11]. However, when the heuristics fails and guides the construction to some unimportant 
area, the complexity of the problem may again reveal itself with large costs in terms of time and 
space requirements. This renders planners utilizing straightforward best-first search strategies 
useless for practical problems, since the planners tend to get trapped examining dead-end regions 
of the cspace. This has been long known as the problem of local minima [1]. 

The same problem is also present when the guiding heuristics takes the form of a potential field 
over the workspace or the cspace. A theoretical result establishes that all global navigation 
functions have saddle points [12], and therefore, simple gradient procedures can terminate at 
some configuration other than the intended goal configuration of the problem. Again, the question 
becomes what to do once the (deterministic) primary technique ceases to make progress. 

Randomization was introduced in order to solve the local minima problem. A randomized search 
procedure can be obtained by combining a heuristic search strategy with randomly generated 
subgoal configurations. The heuristic strategy is first attempted between the original start and the 
original goal configuration. If the heuristics guides the search to a local minimum, a random 
subgoal is generated and the heuristic strategy is attempted via the subgoal configuration. As 
more subgoals are generated and path segments are generated between them with the heuristic 
strategy, they will form a graph that approximates the connectivity of the cspace [14][15]. The 
heuristic strategy can be as simple as a straight-line interpolation between the subgoals [2]. This 
general idea has evolved into a randomized version of the classical roadmap approach [5][6][7] 
and it has been a topic for extensive research under the name of Probabilistic Roadmap Planning 
(PRM). Other similar motion planners use more complex heuristics for search and subgoal 
generation, e.g. [19][18]. 

An early and influential motion planner called Randomized Path Planner (RPP) combined the 
potential field approach with a random walk procedure to escape from the local minima [16]. 
Several variations of the planner were introduced, but it had difficulties in solving problems that 
required long walks against the potential [17]. A special random exploration procedure was later 
introduced to improve the efficiency of randomized search [22]. 

 



 

Recently, the use of quasi-random sampling has been proposed as an alternative for the more 
usual pseudo-random sampling [23]. While eliminating the variance caused by different seeds for 
the random number generator, it remains brittle with respect to small but critical changes in the 
workspace of the problem. Using quasi-random samples to generate the search space 
representation for search procedures [24] reintroduces the problem of local minima, which was 
effectively solved by using the samples as subgoals. 

Very few user experiences with applications utilizing motion planning algorithms have been 
reported in the literature. Experiences with a maintainability study tool based on RPP indicate that 
users find the variance inherent in randomized algorithms very disturbing [25]. Although the run-
cost variance has been known to be a serious deficiency of the sampling based randomized 
motion planners [13], no methods have been presented to directly address this problem. This 
observation has motivated the consideration of the amount of variance as a measure of the 
performance of an algorithm and the investigation in the possibilities of reducing the variance. 

3. Heuristic Techniques for Variance Reduction 

The general idea of the heuristic strategy presented in this paper is to increase the relative effort 
spent in deterministic local search procedure when it is observed that the randomized sampling 
procedure does not succeed rapidly in producing subgoals that cover the cspace adequately. Two 
variations of this general idea are derived with a simple PRM planner using bidirectional A* search 
[26] based local planner and parameterized formulas for increasing the competence of the local 
planner. 

Although A* search algorithm makes a (resolution) complete motion planner when combined with 
one of the cell decomposition methods, it has an exponential memory consumption. The memory 
consumption makes it practically impossible to escape deep local minima, since the algorithm can 
exhaust any available central memory. Therefore, it alone is not suitable for motion planning, but 
must be combined with other methods, here with pseudo-random sample subgoals. The approach 
is to use A* search local planner on a grid approximation of the cspace from one sample to the 
other, but to discontinue A* search when it appears to be too costly to generate the path segment 
with A*. The underlying assumption is that a sequence of subgoals can be found so that A* search 
succeeds in generating all the path segments from the start to target configurations within a 
defined limit on the search efficiency on each segment. 

 The essential property of a search algorithm based local planner is that it allows simple 
evaluation and control of the difficulty of the path segments that the local planner is capable of 
yielding. A measure of search efficiency can be obtained from the ratio of the size of the examined 
search space to the length of the best available path candidate towards the target sample. Noting 
that the local planning is performed in discrete rectangular grid representation of the cspace lets us 
realize the above measure with simple counting operations. Let F(C) be the total number of 
collision-free configurations examined by the local planner until the examination of configuration C. 
Furthermore, let g(C) be the distance from the start sample to the configuration C currently 
examined by the local planner. Now, an efficiency measure O(C) can be defined as 
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The competence of the local planner can be controlled by setting an upper limit Oth for O(C) and 
discontinuing the search in the local planner, if the limit is exceeded. Thus, the local planner is only 
competent to solve problems in which the search algorithm does not at any point violate the given 
efficiency limit by requiring more than the set upper limit of grid point examinations for each step 
proceeded away from the start sample along the currently best solution candidate path. 

Note that O(C) measure is similar to Nilsson’s penetrance [26]. The difference is that penetrance 
is evaluated once after the (optimal) path is found, but O(C) is evaluated continuously during the 
search and used as a control during the search. 

The efficiency of a heuristic search algorithm such as A* is highly dependant on the guiding 
heuristic function. The usual form of the guiding function is f(C) = A×g(C) +B× h(C), where g(C) is 
as above, h(C) is a heuristic estimate for the cost from the currently examined configuration C to 
the target sample, and A and B are constants. The guiding function used here is greedy with 
smaller A=3 and larger B=5. Manhattan distance in the discrete cspace is used for both g(C) and 
h(C). The heuristic estimate h(C) has an additional tie breaking in favor of configurations that 
repeat a motion of a joint along the solution path candidate. 

The sampling strategy used here is simple pseudo-random sampling until a roadmap connecting 
all the seed configurations of the given test task is obtained. Candidate sample pairs for the local 
planner are produced by selecting for the newly generated sample up to k=10 closest samples 
from each connected component of the roadmap at the sample generation time. Euclidean 
distance is used as the distance metric in the selection. 

An interesting problem is the question of how to determine a threshold for O(C). The majority of 
PRM planners have static local planners. For this study, static local planners with well-defined 
capability can be obtained by setting a fixed upper limit o for O(C).  

Since the competence of the local planner can be set separately for each call, information 
gained during the roadmap construction can be used to determine a suitable value for O(C) limit 
with the goal of reducing the overall roadmap construction cost. Two such adaptation strategies 
are proposed here and studied experimentally in the following sections. The first strategy involves 
increasing the O(C) limit linearly with the size of the roadmap. The intuition behind this strategy is 
that more difficult problems require larger roadmap and a more capable local planner to 
adequately describe the connectivity of the cspace. Furthermore, as more samples are added to 
the roadmap, the failure probability of the local planner decreases [27]. If the failure probability is 
lower, failures that are more expensive can be tolerated. This strategy has a global character in 
the sense that it determines a single increasing O(C) limit for all the samples in the roadmap. The 
following parameterized formula is used to determine the threshold Oth for O(C) during roadmap 
construction at a particular roadmap size of S: 

32)( ×=
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A strategy of local character is defined by setting the Oth threshold separately for each sample in 

 



 

the roadmap. The strategy uses a measure of difficultiness of the cspace around a particular 
sample. For each sample v the fraction of successful calls of local planner is computed: 
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where N(v) is the total number of local planner calls with the configuration space sample v either 
as start or target and Ns(v) is the number of calls that succeeded in producing a path segment to or 
from the sample v. This measure is very similar to failure ratio [28]. 

A value of Oth is computed for both start and target samples with the parameterized formula: 
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and the maximum is used as the current threshold value. The intuition behind this strategy is to 
use an estimate of the difficultiness of the cspace region to control the capability of the local 
planner. A small rs suggests that sample resides in a difficult region of the cspace and thus the 
local planner should be given opportunity to search the region more broadly. 

Parameterized heuristics present a problem of selecting the values for the heuristic parameters. 
If the properties of the expected motion planning problems are known, then the parameters should 
of course be tuned for those problems using preliminary experiments [29]. When tuning is not 
possible or desirable, then some on-line procedure can be used to select the value. 

In this paper a metaplanner is used to select the values for parameters o, s and n. Perhaps 
unsurprisingly, the selection is done randomly from a set of reasonable values for each parameter. 
The metaplanner selects a parameter value uniformly from the set at the start of the execution of 
the PRM planner. Based on the preliminary experiments, the reasonable ranges of parameter 
values were determined and the sets defined to be {2, 4, 8, 16, 32} for o, {300, 1000, 3000, 9000} 
for s and {0.01, 0.03, 0.1, 0.3} for n. Thus, the planners compared in the experimental section of 
this paper are PRM variants with bidirectional A* search between the samples. Planner PRM-S 
uses a static local planner at a competence level o selected by the metaplanner at the start of the 
run. PRM-G uses the global adaptation of the local planner according to the equation (1) with 
parameter value s selected by the metaplanner. Similarly, PRM-L uses the local adaptation 
strategy defined by the equation (2) and parameter n. The research question is whether the 
planners PRM-C, PRM-G and PRM-L differ in location or spread of their empirical run-cost 
distributions. The results are taken to indicate possible benefits of increasing the capability of the 
local A* search during planning (PRM-G, PRM-L) against keeping it static (PRM-C). 

4. On the Empirical Methodology 

The run-cost of a Las Vegas -type randomized algorithm varies from run to run according to some 
distribution D. Usually, deriving the true run-cost distribution of a randomized algorithm is a 
formidable task and no such results exists for any of the well-known motion planning algorithms. 
Sometimes the true distribution is sampled empirically and the results are presented in the form of 

 



 

a histogram [15]. More often the run-cost distribution is described by reporting estimates for the 
location and spread of the true distribution [19][21]. This implies a parametric model D(l,s) for 
the run-time distribution, where l describes the location of the distribution and s the spread of the 
distribution. Sample average and median are typically used for estimating the location and sample 
variance, standard deviation or range for estimating the spread. 

Most often, however, only an estimate of the location parameter is presented by reporting the 
sample average of the run-cost over some number of runs. This case is unsatisfactory since it 
hides one of the most problematic characters of the randomized motion planning algorithms. 
Furthermore, it makes it impossible to evaluate the statistical significance of differences between 
algorithms or variations, e.g. when comparing the performance of one sampling strategy with 
another. An estimate of the standard deviation is needed for the most elementary test of statistical 
significance, namely the t-test. Of course, the outcome of the test or analysis of variance should be 
given as an indication of the statistical significance. 

The following section presents descriptive statistics on the run-cost of the proposed PRM 
variants and results from the statistical tests of the significance of the differences between the 
variants. The test problems are two well-known benchmark problems proposed in the literature. 
The Hwang and Ahuja benchmark problem is a 5 degrees-of-freedom robotics motion planning 
problem for a SCARA-type robot [2]. The task was designed to represent a realistic but non-
pathological problem for a manipulator. The task involves removing a hook from a wicket and a 
subsequent backtracking motion to avoid a large obstacle (see Fig. 1). No generally available 
geometric model for the task exists, but a difficult version of the problem called Adept 80 [29] was 
produced for this study.  

The second test problem is the Alpha Puzzle benchmark problem proposed by Amato et al. [8]. 
The problem is intended to represent 6 degrees-of-freedom disassembly problems and it is 
designed to have a narrow passage that the movable object must pass. Several versions of the 
Alpha Puzzle exist with varying difficultiness. This study uses Alpha Puzzle version 1.2, which is of 
medium difficultiness. The original Alpha Puzzle problem involves separating the two intertwined 
α-shaped loops. The loops can be intertwined in two different ways with the prongs of the loops 
either in symmetric (first image in figure 2) or anti-symmetric (last image in figure 2) orientations. 
Since the intention of this paper is to evaluate the performance of the various strategies in 
capturing the full connectivity of the test problems, both intertwined configurations together with a 
separated configuration (middle image in figure 2) are inserted as seed configurations to the 
roadmap at the beginning of the construction. 

The roadmap construction with the PRM variants is continued until a roadmap connecting all the 
seed configurations of the task is obtained and the number of performed collision checks is taken 
as the run-cost measure. The grid approximation of cspace for A* search has resolution of 128 
points for each degree-of-freedom for the Hwang and Ahuja benchmark problem and 512 steps for 
the Alpha Puzzle problem. 

 



 

 

Figure 1: The seed configurations for a version of the benchmark problem proposed by Hwang 
and Ahuja. 

 

Figure 2: The seed configurations for the Alpha Puzzle 1.2 benchmark task. 

5. Empirical Results 

Table 1 gives descriptive statistics for the experiments with the PRM variants. The table gives run-
cost mean, standard deviation and the coefficient of variation for a sample of 240 runs. The 
coefficient of variation expresses standard deviation as a percentage of mean, so it can reveal if 
the standard deviation changes together with the mean. 

 As can be seen in table, PRM-G and PRM-L have considerably better performance than PRM-C 
both in terms of mean run-cost and the standard deviation of the run-cost for the version of the 
Hwang and Ahuja benchmark problem. PRM-L not only has the absolute standard deviation 
improved but also the coefficient of variation is smaller. This indicates that not only has the scale of 
the run-cost distribution changed but also its shape. Ryan-Einot-Gabriel-Welsch multiple 
comparison procedure [31] can declare the difference between static (PRM-C) and adaptive 

 



 

(PRM-G, PRM-L) planner variants statistically significant at α=0.01 (experimentwise), but fails to 
detect statistically significant difference between the two proposed heuristics. Levene’s test of 
homogeneity of variances [32] detects a very significant difference in the standard deviations 
(p=0.0071). For the Alpha Puzzle 1.2 problem the results are not as good. There is a small 
improvement in standard deviation when using the proposed heuristics, but that difference is not 
statistically significant. Neither are the differences in the means. 

The failure of the heuristics to yield statistically significant differences for the Alpha Puzzle 1.2 
may be explained by the fact that it is very difficult to generate “good” subgoal samples for this 
task. Finding critical samples for this problem from a pseudo-random sampling sequence is a rare 
event and the increase in the capability of the local planner fails to make it sufficiently more 
frequent. It can be stated that the behavior of the planners on this test problem is determined by 
the “narrow passage” nature of the problem, as samples are required in a small bottleneck area in 
the cspace. Narrow passages are a well-known difficulty for all PRM type planners [4] and the 
proposed heuristics does not overcome this problem. 

6. Conclusions And Future Work 

This paper introduced the run-cost variance of randomized motion planners as a distinct research 
issue. In future research in randomized motion planners the run-cost variance should be 
considered as an important performance characteristic of the planner. Descriptive statistics and 
statistical tests used in this paper will provide researchers with tools to address the issue of 
variance and strengthen the research methodology. 

As a positive example of possibilities for reducing the run-cost variance of a randomized motion 
planner, simple heuristic techniques were introduced and investigated empirically. A typical 
analysis of the run-cost means shows that the techniques can provide a significant improvement. 
An analysis of the run-cost variance shows an additional benefit of the techniques and helps to 
select between two techniques that have similar expected run-cost. But like all heuristics, also the 
techniques presented here may fail to provide the expected benefit. 

The heuristic techniques for variance reduction presented in this paper can also be used with 
other search procedures that have a means to control the extent of search in the local planner. 
Possible search procedures include randomized ones such as RPP [16] and RRT [22]. But due to 
the lack of a theoretical model of the phenomena, the effectiveness of the proposed techniques 
with other search procedures must be investigated empirically. 
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 Hwang and Ahuja problem Alpha Puzzle 1.2 
 Mean Std. Dev. Coeff. 

Var.
Mean Std. Dev. Coeff. 

Var.
PRM-C 2,021,367 3,308,323 164 1,431,266 1,061,356 74
PRM-G 804,865 1,357,438 169 1,473,386 924,775 62
PRM-L 816,762 800,089 98 1,357,358 921,015 68

Table 1: The mean and standard deviation of the run-cost in collision checks and the coefficient of 
variation for the problems of figure 1 and figure 2. The sample size is 240 runs. 
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