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ABSTRACT 

We describe TreeDT, a novel gene mapping method. Gene mapping aims at discovering a statistical 

connection from a particular disease or trait to a narrow region in the genome. In a typical case-control 

setting of a gene mapping study, data consists of genetic markers typed for a set of disease-associated 

chromosomes and for a set of control chromosomes. The data from each chromosome constitutes its 

haplotype; a computer scientist would view haplotypes simply as strings. 

TreeDT extracts, essentially in the form of substrings and haplotype trees, information about the historical 

recombinations in the population. This information is used to locate fragments potentially inherited from a 

common mutation-carrying founder, and to map the disease gene into the most likely such fragment. The 

method measures for each chromosomal location the disequilibrium of the tree of marker strings starting 

from the location, to assess the distribution of disease-associated chromosomes. 

In this paper we give a detailed description of TreeDT, we analyze it formally, and we evaluate its 

performance experimentally on both simulated and real data sets. Experimental results demonstrate that 

TreeDT has high accuracy on difficult mapping tasks, and comparisons to state of the art methods (TDT, 

HPM) show that TreeDT is very competitive. 

Keywords: Gene mapping, algorithms, permutation tests, haplotype trees. 

 1

DRAFT (accepted for publication in Information Sciences)



 

1. INTRODUCTION 

Gene mapping aims at discovering a statistical connection from a given trait or disease to a narrow 

region in the genome, which can then be further investigated by laboratory methods. Discovery of 

new disease susceptibility genes can have an immense importance for human health care. The gene 

and the proteins it produces can be analyzed to understand the disease causing mechanisms and to 

design new medicines. Further, gene tests on patients can be used to assess individual risks and for 

preventive and individually tailored medications. Obviously, gene mapping is receiving increasing 

interest among medical industry. 

Genetic markers along chromosomes provide data that can be used to discover associations between 

patient phenotypes (e.g., diseased vs. healthy) and chromosomal regions (i.e., potential disease gene 

loci). The growing number of available genetic markers, anticipated to reach hundreds of thousands 

in the next few years, opens new opportunities but also amplifies the computational complexity of 

the task. 

Human genome sequencing efforts, the first ones now practically complete, read the full human 

DNA sequence. There are methods for recognizing where there are genes in the sequence — the 

number of which is currently estimated to be around 30,000. However, we lack methods for 

deriving the function of a gene from the sequence information. Gene mapping approaches this 

problem for one disease at a time. It aims at discovering areas in the genome – hopefully small – 

that have a statistical connection to a given trait, thus narrowing down the area to be analyzed with 

expensive laboratory methods. 

A typical setting for association or linkage disequilibrium based gene mapping is a case-control 

study of some chromosome of diseased and healthy individuals. Instead of looking at the DNA of 

the whole chromosome, only certain marker segments distributed along the chromosome are 

considered. By the analysis of similarities within the disease-associated chromosomes on one hand 

and the differences between the disease-associated and control chromosomes on the other, one can 

try to locate likely areas for a gene that predisposes people to the disease analyzed. 

We introduce TreeDT, a novel method for gene mapping. It analyses the observed strings of 

markers by constructing tree-structured patterns that reflect the possible genetic history of a disease 

susceptibility (DS) gene. The gene is then predicted to be where the strongest genetic contribution is 

visible in the trees. The contributions of TreeDT are:  
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(1) A novel approach to gene mapping using tree patterns,  

(2) An efficient algorithm for generating and testing tree patterns,  

(3) A method for estimating the statistical significance of individual findings as well as the whole 

process, based on multiple permutations but carried out at the cost of a single permutation.  

TreeDT was first introduced in reference [15]. This paper contributes to the topic in the following 

respects: (1) an algorithm for the permutation procedure is given, and readability of all algorithms is 

improved and they are also described in more detail, (2) the report on experiments has been 

extended and, in particular, experiments with a real data set have been added, and (3) algorithms are 

analyzed formally and claims about their properties are proved. 

In the next section we review the gene mapping problem. In the following sections we specify the 

proposed method and then give algorithms for it. After a brief review of related work, we 

experimentally evaluate and compare the performance of the method. Finally, we conclude with 

some directions for future work. 

2. PROBLEM BACKGROUND 

Let us assume the goal is to locate a disease-susceptibility gene for a given disease. We next briefly 

review the genetic background; without loss of generality, we restrict the discussion in this paper to 

one chromosome. (In case one has several chromosomes to analyse, the results for different 

chromosomes are independent, and Bonferroni correction can be applied to the p values obtained by 

TreeDT for individual chromosomes.) 

Marker Data  A genetic marker is a short polymorphic region in the DNA, denoted here by M1, 

M2, …. The different variants of DNA that different people have at the marker locus are called 

alleles, denoted in our examples by 1, 2, 3, … . The number of alleles per marker is small: typically 

less than ten (for so called microsatellite markers) or exactly two (for so called SNPs). The 

collection of markers used in a particular study constitutes its marker map, and the corresponding 

alleles in a given chromosome constitute its haplotype (Figure 1). For the purposes of this paper the 

input data consists of haplotypes of diseased and control persons – or, in computer science terms, 

aligned allele strings, classified to positive and negative examples. 

Linkage Disequilibrium  All the current carriers of a disease-susceptibility mutation have inherited 

it from some founder individual who introduced it to the population (Figure 2). If there has been 
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only one such founder, then current carriers are related and segments from the mutation carrying 

founder chromosome are over-represented among the affected at mutation locus. Relatively young 

(e.g. 1000 years) population isolates are promising sources of data in this respect: a disease-

susceptibility allele may have been introduced by one or two founders only, and the allele may be 

over-represented in the population. Kainuu region in eastern Finland is an example of such a fruitful 

area for genetic studies. 

If there are conserved regions at the mutation locus, then it can be possible to observe linkage 

disequilibrium (LD), non-random association between nearby markers. One of our goals in this 

paper is to develop a method that suits well situations where there are a few mutation-carrying 

founders.  

Gene Mapping  In diseases with a reasonable genetic contribution, and especially in population 

isolates where few founders have introduced the mutation, affected individuals are likely to have 

higher frequencies of founder alleles and haplotype patterns near the DS gene than control 

individuals. This is the starting point of LD-based mapping methods: where does the set of affected 

chromosomes show linkage disequilibrium? The problem is far from trivial, however. The 

recombination history is stochastic; mutation carriers often only have a higher risk of being diseased 

than non-carriers, and in a case-control study both groups are usually mixes of carriers and non-

carriers; finally, there is missing information. 

Summary of Background and Problem Statement  Genetic markers provide an economical, 

sparse view of chromosomes. Even sparsely located markers can be very informative: given an 

ancestor with a mutated gene, the descendants that inherit the gene are also likely to inherit alleles 

of nearby markers. The exact probability of inheriting any combination of markers depends on the 

gene location with respect to the markers, the population history or the recombination history, and 

marker mutations; all of these are unknown.  

Our gene mapping framework belongs to the family of association/LD-based mapping methods. It 

is a case-control setting, where the input consists of haplotypes. Each individual contributes a 

chromosome pair, so the number of chromosomes is twice the number of individuals. We ignore the 

fact that chromosomes come in pairs and simply consider the input data as consisting of a set of 

disease-associated haplotypes (from the cases) and a set of control haplotypes. 
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The LD-based gene mapping problem is now the following. The input consists of a marker map, 

and a set of disease-associated haplotypes and a set of control haplotypes on the given map. The 

task is to predict the location of a disease susceptibility gene on the map. 

3. METHOD 

3.1 Haplotype Trees 

TreeDT is based on estimating and evaluating the genealogy of the observed haplotypes. For any 

pair of chromosomes in the sample there has been a common origin in the population history, an 

ancestral chromosome at which their paths have diverged. Due to recombinations different parts of 

chromosomes have different histories, and at any given location the chromosomes in the sample and 

their most recent common origins form a genealogical tree for that location. In the genealogical tree 

for the DS gene location, all the chromosomes in one or more subtrees carry the DS mutation, and 

we should observe excess of disease-associated haplotypes in these subtrees. Looking at 

genealogical trees for various locations, the closer the location is to the DS gene the more and larger 

subtrees are identical to those in the tree at the DS gene location. 

Given a location in the chromosome – a potential gene locus – the haplotypes to the right of the 

location can be organized into a tree (Figures 3 and 4), as can haplotypes to the left. In stringology, 

trees like these are called tries. TreeDT uses the right and left trees as two different estimates of the 

genealogical tree at the location.  

TreeDT builds these two trees between each pair of consecutive markers. It then assesses the 

subtree clustering of disease-associated haplotypes in these trees. For this task we introduce a novel 

tree disequilibrium test, intended for predicting DS gene locations. The vicinity of the location for 

which the test gives the lowest p value is the most likely candidate area for the DS gene location. 

The method also computes the corrected overall p value for the best finding. It can be used for 

predicting whether the chromosome carries a DS gene at all or not. 

3.2 Tree Disequilibrium Test 

The tree disequilibrium test for a haplotype tree T tests the alternative hypothesis The distribution of 

the disease-association statuses deviates in some subtrees of T from the overall distribution of 

statuses against the null hypothesis The disease-association statuses are randomly distributed in the 
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leaves of T. TreeDT identifies the set S of subtrees in which the observed status distribution departs 

most from the expectation under the null hypothesis. In the next subsection we discuss how to 

estimate the significance of the departure and how to use it in gene mapping.  

For measuring the disequilibrium of a tree, we use a variant of the Z test. The test statistic Zk for a 

set S of k deviant subtrees T1,…,Tk is 

1 if   0or  ,1 if   
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where ai is the number of disease-associated haplotypes and ni the total number of haplotypes in 

subtree Ti ∈ S, and p is the proportion of disease-associated haplotypes in the sample. The score 

measures the distance of the observed number of disease-associated chromosomes (ai) from the 

expectation (nip) in standard deviations ( )1( ppni − ), under the assumption of binomial 

distribution with parameters ni and p. Subtrees consisting of a single leaf do not contribute to the 

test statistic, since it is only possible to extract localization information from two or more 

haplotypes sharing a region. We use a one-tailed test, since we are interested only in subtrees in 

which the proportion of disease-associated haplotypes is greater than expected. 

For any given tree T, we are interested in the maximum value of Zk over all sets of k non-

overlapping subtrees of T, denoted by ZMAXk(T): 

ZMAXk(T) = max {Zk(S) | S is a set of k non-overlapping subtrees of T}.                    (2) 

One usually considers all different values for k, possibly limited by some maximum value kmax. 

Ideally, we would use the χ2-statistic from a 2×(k+1) contingency table instead of Zk. The 

χ2-statistic, however, is not easily maximized in the space of all possible subtree sets and is 

therefore not a very practical choice. Zk can be efficiently maximized simultaneously for all k using 

a recursive algorithm, as shown in the Algorithms section. Efficiency of the maximization 

procedure is important, because it is performed many, usually millions of times during the 

execution of TreeDT. Therefore we use Zk as a practical approximation of χ2. 

3.3 Significance Tests 

After the maximization of Zk values for all k we have a number of ZMAXk values together 

representing the disequilibrium of a tree corresponding to a certain location in the chromosome. 
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Next we want to compress this information into a single value. Since the statistics for different 

degrees of freedom k are not comparable, simple maximization of the ZMAXk over all possible 

values of k is not justified. Therefore TreeDT estimates the p value for each k under the null 

hypothesis of random distribution of disease statuses, and the lowest of these p values is used as a 

measure of disequilibrium of the tree. Because the distribution of ZMAXk is very complex and 

dependent on the tree structure, p values are estimated by a permutation test. 

Next, in order to get a single p value representing the disequilibrium at a given location, we need to 

combine the information from the trees to the left and to the right of the location. As a combined 

measure we use the product of the lowest p values over all k from each side. Again, since the 

measures are not necessarily directly comparable, a new p value for the combination is estimated 

using a permutation test. We are aware that the maximization of the test statistic introduces a 

selection bias favoring smaller subtrees, but at this point we have not taken any actions to 

compensate for it. 

The output of TreeDT is essentially a list of p values for the tested locations. A point prediction for 

the gene location is obtained by taking the best location; a (potentially fragmented) region of length 

l is obtained by taking best locations until a length of l is covered. A direct link between the p value 

and the probability that the gene is indeed close to the location cannot be established. The p values 

are used simply as a method of ranking the locations. 

However, a single corrected p value for the best finding can be obtained with a third significance 

test using the lowest local p value as the test statistic. The null hypothesis in this case is At all  

locations the disease statuses are randomly distributed in the leaves of the trees. The resulting p 

value can be used to answer the question whether there is a gene in the investigated area in the first 

place or not: the null hypothesis is rejected, if the resulting p value is lower than a predetermined 

significance level. All the three nested p value tests (for each tree and k, for each location, for the 

best location) can be carried out efficiently at the cost of a single test, as shown in the Algorithms 

section. 

4. ALGORITHMS 

The TreeDT algorithm can be decomposed into two subtasks: construction of the left and right-side 

haplotype trees for each location and carrying out the permutation procedure. The most time critical 
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part of the permutation procedure is the computation of the ZMAX statistics. These tasks are 

discussed in detail in the following subsections. 

4.1 Constructing Haplotype Trees   

The haplotype trees to the left and right from each analyzed location can be efficiently identified 

using the textbook radix sort algorithm (see eg. [6]). The algorithm produces as intermediate results 

for each marker a sorted list of the partial haplotypes to the right from the marker. All the right-side 

trees can be easily derived from these intermediate lists, because the haplotypes belonging to a 

single node form a continuous block in the sorted list. The left-side trees can be identified similarly 

by sorting the inverted haplotypes. The computational cost of constructing all the trees is linear both 

in the number of markers and the number of haplotypes, and it is negligible compared to the cost of 

the permutation test procedure. 

4.2 An Algorithm for Maximizing the Test Statistic 

It is essential that the time-complexity of the algorithm for maximizing the Z values is as low as 

possible, because it must be executed for each tree location and permutation in turn. An efficient 

recursive algorithm, MaximizeZ, which propagates the locally maximized Z values upwards in the 

tree is presented below. The algorithm is based on the recursive definition of ZMAX: 

1. ZMAX1(T) = max {Z1(T)} ∪ {ZMAX1(T ´) | T ´ is a proper immediate subtree of T} 

2. ZMAXk(T) = max { ∑i∈U ZMAXki(Ti) | ∑i∈U ki = k and U⊆{1, … , m} and {T1, … , Tm} is the 

set of proper immediate subtrees of T}, where k > 1. 

The notion ZMAX is generalized to apply for forests as well in the obvious way: ZMAXk(F) is the 

maximum value of Zk(S) where S is a set of k non-overlapping subtrees of forest F. 

Algorithm MaximizeZ(T): 

Input: Haplotype tree T 

Output: ZMAXk(T) for all k, 1 ≤ k ≤ n, where n is the number of leaves in T 

Method: 

If T is a leaf, then set ZMAX1(T) := 0 
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Otherwise: 

1. // For each k: calculate the maximum value ZMAXk(T) for Zk over all S that can be obtained by 

// combining subtree sets from each subtree Ti of T. 

1.1 F := {}. 

1.2 For each immediate proper subtree T´ of T: 

1.2.1 Recursively call MaximizeZ(T´). 

1.2.2 For each k, 1 ≤ k ≤ a, where a is the total number of leaves in forest F: 

ZMAXk(F ∪ {T´}) := ZMAXk(F). 

1.2.3 For each k, a < k ≤ a + b, where b is the number of leaves in T´: 

ZMAXk(F ∪ {T´}) := 0. 

1.2.4 For each pair (i,j), 1 ≤ i ≤ b and 1 ≤ j ≤ a: 

If ZMAXi(T´) + ZMAXj(F) > ZMAXi+j(F ∪ {T´}), 

then ZMAXi+j(F ∪ {T´}): = ZMAXi(T´) + ZMAXj(F). 

1.2.5 F := F ∪ {T´}. 

1.2.6 For each k, 1 ≤ k ≤ b: 

If ZMAXk(T´) > ZMAXk(F), then ZMAXk(F) : = ZMAXk(T´). 

2. For each k, 1 ≤ k ≤ n, where n is the total number of leaves in T: ZMAXk(T) := ZMAXk(F). 

3.  Calculate Z1 for T (Eq. 1). If Z1>ZMAX 1(T) then ZMAX 1(T) := Z1. 

  

The time complexity of the algorithm is O(n2), both on the average and in the worst case, where n is 

the number of leaves in the tree, i.e. the number of haplotypes in the data set. By setting an upper 

limit kmax for the size of the subtree sets, the time complexity can be reduced to O(n) with a constant 

coefficient proportional to kmax
2, kmax being typically small, ≤ 10. The only modification required in 

the algorithm is an additional condition ≤ kmax for index k and sum i + j in steps 1.2.2 – 1.2.6. In 

principle there is no need to set an upper limit – the number of chromosomes is the maximum 

number of subtrees – but whenever LD-mapping is applicable, the majority of mutation carriers is 

concentrated in only few subtrees of the haplotype trees at the DS gene locus, and using this prior 

information to restrict the number of subtrees may slightly increase the power of the method, as 

shown in the Experiments section. In the experiments for this paper we use an upper limit of 3 

subtrees.  
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The space complexity is O(n) if the number of subtrees is not restricted. The average complexity 

reduces to O(log n) for the restricted case. Proofs for the correctness and time and space 

complexities of the algorithm are given in the appendix. 

4.3 An Efficient Algorithm for Multiple Nested Permutation Tests   

The straightforward algorithm for a three-level nested permutation test using nested loops would 

have time complexity proportional to q3, where q is the number of permutations at each level. The 

test would be intractable already with rather low permutation counts. However, the time complexity 

can be drastically reduced using the same set of permutations at each level of the test and thus only 

maximizing the Z values q instead of q3 times for each location. 

 

Algorithm NestedPermutationTests: 

Input: Set of tested locations, pair of opposed haplotype trees for each location, number of 

permutations q 

Output: Local p value p_local(l) for each tested location l, overall corrected p value p_corrected 

  

// Level 1 

1. For each haplotype tree T:  

1.1 Call MaximizeZ(T), which returns ZMAXk(T) for each number of subtrees k. 

1.2 For i in 1…q: 

1.2.1 Generate a tree P(T,i) from T by permuting the disease-association statuses of the 

haplotypes. The permutation is some function of i.   

1.2.2 Call MaximizeZ(P(T,i)), which returns ZMAXk(P(T,i)) for each number of subtrees k. 

1.3 For each number of subtrees k: 

1.3.1 Calculate a p value pk(T) by comparing ZMAXk(T) to ZMAXk(P(T,i)) for all i (see 

 text below for the computation of p values). 

1.3.2 For each permutation i: calculate a p value pk(P(T,i)) by comparing ZMAXk(P(T,i)) to 

all ZMAXk(P(T,j)), j ≠ i and ZMAXk(T). 

1.4 pmin(T) := min {pk(T)} over all k. 

1.5 For each permutation i: pmin(P(T,i)) := min {pk(P(T,i))} over all k. 
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// Level 2 

2. For each tested location l and the pair (T1,T2) of opposed haplotype trees located at l: 

2.1 Calculate a p value p_local(l) by comparing product pmin(T1)pmin(T2) to 

pmin(P(T1,i))pmin(P(T2,i)) for all i. 

2.2 For each permutation i: calculate a p value p_local(i,l) by comparing product 

pmin(P(T1,i))pmin(P(T2,i)) to all pmin(P(T1,j))pmin(P(T2,i)), j ≠ i, and pmin(T1)pmin(T2). 

// Level 3 

3. pmin := min {p_local(l)} over all l. 

4. For each permutation i: pmin(i) := min {p_local(i,l)} over all l. 

5. Calculate the overall corrected p value p_corrected by comparing pmin to pmin(i) for all i. 

 

The p value from a permutation test is determined by comparing the observed value of the test 

statistic to the distribution obtained from the permutations. p is the proportion of permutations for 

which the test statistic has at least as extreme value as the observed value: 

{ }
q

qiss
p i ≤≤≥
≈

10 , 

where s0 is the observed statistic, si is the same statistic from the ith permutation, and q is the 

number of permutations. If the test statistic is being minimized instead of maximized, as is the case 

with p values as tests statistics, then “less than” should be used instead of “greater than” . 

Due to the finite number of permutations, the precision of the p values given by a permutation test 

may not be sufficient for accurate localization. In some situations even a very large number of 

permutations does not produce any values for the test statistic as extreme as the observed values, for 

several consecutive locations. For this reason the p values returned by the first and second level 

permutation tests are determined slightly unconventionally. In Steps 1.3.1 and 1.3.2, the returned p 

value is interpolated between the p values corresponding to the next lower and higher values for the 

test statistic obtained by permutations. If the observed score so at level 1 is higher than the highest 

score sp obtained from the permutations, the p value is extrapolated using the ratio of the two 

scores,
qqs

s
p

o

p 1
≤= . At level 2, in Steps 2.1 and 2.2, if the observed score is lower than the lowest 

obtained from the permutations, a lower boundary value of zero is used to interpolate a value. 
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Finally, the top-level test returning the overall p value is implemented in the usual conservative 

manner. 

The time complexity of steps 1.3.2 and 2.2 is O(q log q) using an algorithm which first sorts the 

values of the test statistic for all the permutations. Step 1.2.2 predominates the time complexity of 

the algorithm, O(qn2s), where n2 is the time complexity of MaximizeZ algorithm, and s is the 

number of markers (or tested locations) in the chromosome. 

4.4 Algorithm TreeDT 

As a summary, we give an informal description of the TreeDT algorithm. As input it takes a marker 

map and a set of disease-associated and control haplotypes. The parameters for the algorithm are the 

number of permutations and optionally the maximum or exact number of subtrees to be tested. Its 

output consists of local p values for all tested locations and an overall corrected p value, as returned 

from the NestedPermutationTests algorithm. The set of locations to be tested is the set of intervals 

between adjacent markers. 

The haplotypes are sorted using radix sort algorithm. After each iteration of radix sort, level 1 of the 

permutation procedure is performed for the right-side haplotype tree implicit in the intermediate 

sorting result. One only needs to store the smallest p value over all numbers of subtrees for each 

haplotype tree and each permutation. In a second pass the same is done for the inverted haplotypes 

and the left-side haplotypes. All there is left after this point is straightforward execution of levels 2 

and 3 of the permutation algorithm.  

5. RELATED WORK 

Most current gene mapping methods based on linkage disequilibrium look just at individual 

markers or neighboring markers, measure their association to the disease status, and predict the gene 

locus to be co-located with the strongest association. However, since different mutation carriers 

share different segments, there is no single marker or pattern that is representative of the shared 

segments.  

In the recent years, several statistical methods have been proposed to detect LD [5][9][11][13][18]. 

The emphasis has been on fairly involved statistical models of LD around a DS gene. They model 

whole recombination histories and some are robust to high levels of heterogeneity. On the other 

hand, the models are based on a number of assumptions about the inheritance model of the disease 
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and the structure of the population, which may be misleading for the statistical inference. The 

methods tend to be computationally heavy and therefore better suited for fine mapping than genome 

scanning. 

Haplotype Pattern Mining or HPM [19] is based on analyzing the LD of sets of haplotype patterns, 

essentially strings with wildcard characters. The method first finds all haplotype patterns that are 

strongly associated with the disease status, using ideas similar to the discovery of association rules 

[1][2]. Since the patterns may contain gaps they can account for some missing and erroneous data. 

In the second step, each marker is ranked by the number of patterns that contain it. Either this score 

is used as a basis for the prediction or, preferably, a permutation test is used to obtain marker-wise p 

values. HPM has been extended for detecting multiple genes simultaneously [20] and to handle 

quantitative phenotypes and covariates [14].  

Nakaya et al investigate the effect of multiple separate markers, each one thought to correspond to 

one gene, on quantitative phenotypes [12]. Their work is a generalization of the LOD score to 

multiple loci, and it does not handle haplotype patterns. 

An alternative approach for LD-based mapping is linkage analysis. The idea is to analyze family 

trees, and to find out which markers tend to be inherited to offspring in conjunction with the 

disease. Linkage analysis does not rely on common founders, so in that respect it is more widely 

applicable than LD-based methods. The downside is that estimates are rough (due to the smaller 

effective number of meioses sampled), and that collecting information from larger families is more 

difficult and expensive. 

Transmission/disequilibrium tests (TDT) [16] are an established way of testing association and 

linkage in a sample where linkage disequilibrium exists between the mutation locus and nearby 

marker loci. TDT detects deviations between observed and expected counts for each allele, or, in its 

multipoint variant, haplotype of several alleles, transmitted from heterozygous parents to affected 

offspring. We performed TDT analysis using GENEHUNTER2 software package [7] for our 

experiments in the next section. 

Single permutation tests have been used in mapping studies before [4][8][10], but we are not aware 

of any multiple permutation tests similar to the ones presented in this paper. 
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6. EXPERIMENTS 

We compare TreeDT empirically to TDT, to multipoint TDT (m-TDT) using haplotypes of up to 

four markers, and to HPM, our recent proposal based on pattern discovery. We evaluate the 

methods on difficult data collections carefully simulated to resemble a realistic population isolate. 

6.1 Data Sets 

Simulated Data We designed several different test settings, with variation in the fraction (A) of 

mutation carriers in the disease-associated chromosomes, in the number of founders who introduced 

the mutation to the population, in the amount of missing information, and in the sample size. For 

statistical analyses, we created 100 independent artificial data sets in each test setting. Great care 

was taken to generate realistic data by a simulation procedure that included four steps: pedigree 

generation, simulation of inheritance, diagnosing, and sampling. 

The population pedigree was set to grow exponentially from 100 to 100,000 individuals in a period 

of 20 generations. In each generation, the individuals were first randomly coupled. Then, for each 

child, a couple was randomly selected for the parents. The total number N of children in each 

generation was fixed, thus the number of children for each couple followed the binomial 

distribution with parameters N and 1 / (number of couples). 

The inheritance of chromosomes within the population pedigree was simulated by first allocating a 

continuous chromosomal segment of 100 cM1 to each founder individual in generation 0. Next, the 

entire pedigree was traversed top-down, and, in each inheritance event, gametes were created by 

simulating meioses under the assumption that the number of chiasmata in the pair of homologous 

chromosomes was drawn from the Poisson distribution with parameter one (corresponding to the 

genetic length of 100 cM), and their locations selected randomly. A related approach was originally 

presented in [17]. 

The location of the mutation was selected randomly for each of the 100 data sets produced, but the 

sources (founder chromosomes) of the mutation were selected each time specifically to make the 

                                                      

1 Morgan is a unit of genetic length. 1 cM is the distance at which crossover is expected to occur 

once in 100 meioses, on average about 106 base pairs. Human chromosomes are about 50–300 cM. 
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frequency of the mutation in the final generation as close to 2% as possible. In the baseline setting 

there is one mutation-carrying founder chromosome. 

The risk for becoming affected was set in such a way that the expected proportion of mutation-

carrying chromosomes among the affected in the final generation was equal to a parameter A. For a 

baseline test setting we selected a challenging disease model where only a small proportion 

(A=10%) of the disease-associated chromosomes carries the disease-predisposing mutation, a 

complication that often is encountered in the analysis of common diseases. 

Next, 100 random samples of affected individuals (100 individuals in each sample in the baseline 

setting) and their parents were selected. Since the number of mutation-carriers was fixed only at the 

level of generation – rather than a single sample – considerable variance remains in the number of 

mutation-carriers between samples, which makes localization more challenging than for data sets 

presented in [19]. For all members in the sample, allelic data were created using a map of 101 

equidistantly spaced markers, each having 5 alleles, one of which had a frequency of 0.4 whereas 

the the four other alleles had equal frequencies of 0.15. 

In real-life the haplotypes of an individual cannot be read directly. For each marker only its 

genotype, the pair of alleles without knowledge about their parental origins, is observed. To 

construct the haplotypes in a realistic way we also need to utilize the genotype information from the 

parents. By looking at the genotypes of the offspring-parents-trio we can infer which alleles have 

been transmitted to the offspring. The haplotypes constructed from the alleles transmitted to each 

affected individual in a sample were labeled disease-associated, whereas the haplotypes constructed 

from the non-transmitted alleles of the parents can be conveniently used as controls. However, in a 

rare case of three similar heterozygote genotypes at a marker (both parents and the offspring), 

determining the parental origin of the inherited alleles is impossible. We chose to take this into 

account by setting the alleles unknown in these cases. Thus, 3.7% of alleles are missing, making the 

mapping task more difficult, but also more realistic. 

In one of the experiments, we randomly removed 5% of the alleles in the genotype data, adding 

further complexity to the determination of parental origin. Consequently, about 15% of the allele 

information in the resulting haplotypes is missing. 

The final output of this simulation procedure is a collection of 100 data sets (with a mutation 

proportion of A among the affected chromosomes), consisting of 200 disease-associated and 200 

control chromosomes in the baseline setting, each containing the alleles of 101 adjacent markers. 
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Real Type 1 Diabetes Data  In order to test and demonstrate the real-life performance of TreeDT, 

we analysed a Type 1 Diabetes dataset [3]. We have used exactly the same dataset in the article 

introducing HPM [19]. The study subjects were genotyped for 25 markers covering 14Mb including 

the HLA-region. There is a known major susceptibility locus located in the center of the marker 

map. The data consists of 385 affected sib-pairs and their parents, out of which 100 randomly 

chosen families were used. One child was randomly selected from each family. The non-transmitted 

parental haplotypes were used as controls, and the transmitted as cases. 

6.2 Analysis of TreeDT 

First we assess the prediction accuracy of TreeDT with different values of A, the proportion of 

disease-associated chromosomes that actually carry the mutation (Figure 5A). The results are 

reported as curves that show the percentage of 100 data sets where the gene is within the predicted 

region, as a function of the length of the predicted region. Or, in other words, the x coordinate tells 

the cost a geneticist is willing to pay, in terms of the length of the region to be further analyzed, and 

the y coordinate gives the probability that the gene is within the region. For A=20% or 15% the 

accuracy is very good, and with lower values of A the accuracy decreases until with A=5% only in 

20-30% of data sets can the gene be localized within a reasonable accuracy of 10–20 cM. We 

remind the reader that the test settings have been designed to be challenging, and to test the limits of 

the approach. 

Next we evaluate the effect of the only parameter of TreeDT, the number of deviant subtrees that 

are searched for in each tree. An upper limit of 6 subtrees, used in the previous test, is evaluated 

against fixed amounts of 1, 2 or 3 subtrees, with a varying number of founders that introduced the 

mutation (Figure 5B). As we increase the number of founders, evidence about the gene location 

becomes more fragmented, and accordingly the performance degrades. While the differences 

between different numbers of subtrees are not large, it is interesting to note that for each number of 

founders, the same number of subtrees gives marginally the best result. The upper limit of 6 

subtrees gives consistently competitive results, so we continue using it in the following 

experiments.  

As expected, the localization power increases with the sample size, although increasing the sample 

sizes from 800 to 1,200 chromosomes does not improve the results significantly any more (Figure 

5C). We also evaluated the effect of the maximum number of subtrees in the baseline setting, where 
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there was a single mutation-carrying founder. Decreasing the maximum number does increase the 

power, as shown in Figure 5D, because the number of tests on the lowest level decreases with it. 

However, tests with different numbers of subtrees are highly correlated, and the differences in 

power are rather small. Furthermore, the number of mutation-carrying founders for a real dataset is 

usually unknown, so it might not be wise to set too low a limit. 

Gene mapping studies like the ones imitated in the above tests assume, based on some other 

analyses, that a disease susceptibility gene is indeed present in the analyzed area. TreeDT has the 

important advantage over plain gene localization methods that it can also be used to predict whether 

the analyzed region contains a disease susceptibility gene at all or not. The overall p value TreeDT 

produces indicates the corrected significance of the best single finding, and by setting an upper limit 

for its value TreeDT can be used to classify data sets to ones that do or do not contain a mutation. In 

order to verify the correctness of the permutation procedure, we generated 100 data sets where the 

disease-association statuses were randomly chosen for each individual, that is, there is no genetic 

contribution from the simulated chromosome. For these data sets, TreeDT should produce overall p 

values as well as local p values from the uniform distribution in [0,1]. Figure 6A shows the 

cumulative distribution of the observed overall p values on these data sets; for only 100 data points 

the deviation from the diagonal is within expectations. The local p values follow the uniform 

distribution very convincingly (Figure 6B). 

Smaller thresholds for the overall p value result in less false positives, but also in less true positives. 

Figure 6C shows the experimental relationship, in the form of a ROC curve, between power (ratio 

true positives/all positives) and overall p (ratio false positives/all negatives). For higher values of A 

the classification accuracy is extremely good. However, for A=5% the classification accuracy is no 

better than random guessing, although the localization accuracy for an existing gene is still adequate 

in 20–30% of the cases (Figure 5A). 

6.3 Comparison to other methods   

TreeDT, HPM, and m-TDT have practically identical performance in localizing the DS gene in the 

baseline setting (Figure 7A). The parameters we used for HPM were χ2 threshold 7, maximum 

pattern length 7 and one gap of at most one marker. TDT is clearly inferior compared to the other 

methods. Tests with other values of A or other sample sizes give similar results (not shown). 
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In a test setting with three founders who introduced the mutation to the population, differences 

between the three best methods start to appear (Figure 7B). TreeDT has an edge over HPM, which 

in turn has an edge over m-TDT. TDT barely beats random guessing. 

Finally, we compare the methods with a large amount of missing data (Figure 7C). Expectedly, 

HPM is most robust with respect to missing data since it allows gaps in its haplotype patterns. 

Surprisingly, TreeDT is not much weaker than HPM, although no actions have been taken in it to 

account for missing or erroneous data. Using a simple method for imputing values for the missing 

alleles improved the results of TreeDT to be on par with HPM (results not shown). Performance of 

m-TDT degrades much more clearly. 

On the real Type 1 diabetes data, TreeDT pinpoints the known DS locus very convincingly using 

10,000 permutations (Figure 7D). HPM with the same number of permutations is able find the locus 

as well, but local p values given by TreeDT are much smaller, and the extrapolation mechanism 

further highlights the predicted location. None of the permutations gave at least as small lowest 

local p value as the lowest for the observed data. The overall corrected p value is thus <10-5. 

Method to method comparisons of prediction (not shown) indicate that errors are mostly caused by 

random effects in population history – since different methods tend to make mistakes in the same 

data sets – rather than by systematic differences between the methods. However, those cases where 

one method succeeds and another fails will give useful input for further improvements of the 

methods. 

The execution time of TreeDT for a simulated data set with 400 haplotypes is about one minute 

using 1,000 permutations on a 1400 MHz Pentium 4. The respective time for HPM with 

permutations is over 4 minutes. 

7. DISCUSSION 

We have introduced TreeDT, a novel method for gene mapping. It is based on detecting linkage 

disequilibrium in the haplotype trees to the right and left of the disease susceptibility gene location. 

We have shown how tree disequilibrium can be efficiently evaluated between every pair of 

consecutive markers, and be subsequently tested for statistical significance using multiple, nested 

permutation tests with the cost of one. Empirical evaluation on a realistic, simulated data shows that 

the method is competitive with other recent data mining based methods, and clearly outperforms 

more traditional methods. 
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Nowadays the focus of gene mapping methodology is on complex diseases, where there are several 

genes and possibly environmental factors contributing to susceptibility. With complex diseases the 

associations of individual genes are diluted by the effects of the other factors. Therefore methods 

looking for individual susceptibility genes must be able to detect rather weak genetic effects. 

Towards this end, in the simulated data sets used in the experiments only a small fraction (5–20%) 

of chromosomes carried the mutated allele, creating a mapping challenge similar to that of mapping 

individual genes for a complex disease. Models including gene–gene and gene–environment 

interactions may capture the underlying mechanisms of the disease better than methods looking for 

single gene association. However, typical sample sizes may not warrant the additional complexity 

of such models.  

One of the problems with real haplotype data is that there are missing alleles due to problems in 

allele calling and ambiguities in determination of the haplotypes. The algorithm as described in this 

paper regards a missing allele as just another allele symbol, which may result in premature or 

delayed branching of shared haplotypes in the tree.   

Even if there is no missing or erroneous data, the haplotype trees TreeDT uses as estimates may 

differ from the true genealogical trees in two ways: 1) The order of nodes may differ from that in 

the true genealogical tree, e.g., in Figure 4, 34--- might actually be a more recent node than 3411-. 

However, because the expected length of the shared region of two chromosomes decreases 

monotonically as the time from their divergence increases, it is easy to see that the order given by 

subsumption is the most likely one. 2) Because haplotypes may also share a substring by chance, 

the internal nodes of the estimate may represent a combination of nodes in the true genealogical 

tree. As a result, the mutated subtree in the genealogical tree may be split to a few subtrees in the 

estimated tree. Or, on the other hand, it may be merged with other subtrees, diluting the observable 

disequilibrium in the combined subtree. We believe that in most cases the structure of the estimated 

tree is close enough to that of the genealogical tree to allow for testing the disequilibrium with a 

reasonable power. This view is supported by the results from our experiments. 

Our experiments show that TreeDT is effective in extreme conditions typical for current mapping 

problems: with lots of noise (only 10–20% of affected chromosomes carry the mutation, lots of 

missing data) and with small sample sizes (200 affected and 200 control chromosomes). However, 

the highest potential of the method lies in the data intensive tasks of future – such as genome 
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scanning with larger samples and larger number of markers – due to its low computational 

complexity. 

In comparison to state of the art methods, TreeDT is most competitive. In terms of gene localization 

accuracy, it gave best results in the case of multiple founders and demonstrated good robustness 

with respect to missing data. Unlike the compared methods, TreeDT can be used to predict whether 

a gene is present at all or not. Finally, in comparison to its closest competitor, HPM, TreeDT has 

much smaller computational cost. An additional advantage of TreeDT is that it has only one 

optional input parameter, the (maximum) number of deviant subtrees, whereas for HPM one has to 

set several parameters. 

As with any association or LD–based methods, some limitations inevitably apply to TreeDT as 

well. 1) A dense enough marker map is needed to be able to observe LD between the disease locus 

and the nearby markers. Sufficient density depends on the expected length of haplotype sharing in 

the population under study, but typically at least one marker per cM is used. Simulation 

experiments imitating the target population, such as those reported in this article, are most useful in 

determining marker density and sample size needed to acquire desired power to detect susceptibility 

genes. 2) As a pure case-control association method, TreeDT is vulnerable to the potential false 

positives caused by population substructure. The problem can be avoided by carefully matching the 

controls with the cases, e.g. by using the non-transmitted chromosomes of the parents of the cases 

as control chromosomes. 3) Case–control studies are ineffective if the disease-predisposing 

mutation is carried in many infrequent haplotypes. Isolated founder populations are invaluable for 

case–control studies, as recent genetic bottlenecks – periods of slow growth of a small population – 

have reduced the number of different haplotypes carrying the mutation in current population. 

Our future work will address several issues. One is more complex haplotype data: robustness 

towards missing information, errors, and marker mutations is important with noisy, real-life data 

sets. A whole set of issues concerns improving tests and models for the tree disequilibrium. Now we 

combine the left and right trees at a locus without considering how the haplotype strings actually 

extend over the locus; obviously we miss some information. Another way of improving the model 

performance is to average the disequilibrium test over all different tree structures. The test statistic 

itself will be improved to better account for the genetic processes that produce the data. 
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APPENDIX 

A.1  Correctness of Maximize_Z algorithm 

Lemma 1. The values produced in step 1 for vector ZMAX(F) for any set F of immediate subtrees 

of some tree T are correct, given that vector  ZMAX(T’) is correct for each T’ ∈ F. 

Proof by induction. If F = {} the theorem holds trivially as the dimensionality of vector ZMAX(F) 

is zero. Otherwise, the algorithm has already produced vector ZMAX(F’) for a forest F’, 

F = F’ ∪ {T’}. Let us assume that theorem 1 holds for F’. The collection of sets of k non-

overlapping subtrees of F is the union of those of F’ and T’ and those sets that can be obtained by 

combining subtrees from both. Thus, ZMAXk(F) is max{ZMAXk(F’), ZMAXk(T’), max{ZMAXi(F’) + 

ZMAXj(T’) | i + j = k and 1 ≤ i, j}}. It is easy to see that steps 1.2.2 – 1.2.6 produce correct value for 

vector ZMAX(F). 

Lemma 2. For any tree T step 1 of the algorithm produces a value for ZMAXk(F) for all k ≤ n, where 

F is the set of immediate subtrees of T and n is the total number of leaves in forest F. Proof omitted 

as trivial. 

Theorem 3. The algorithm produces correct values of ZMAXk(T) for any tree T. 

Proof by induction. If T is a leaf, theorem 3 holds trivially. If T is not a leaf then let us assume that 

theorem 3 holds for each immediate subtree of T. Theorems 1 and 2 state that vector ZMAX(F), 

where F is the set of immediate subtrees of T, is correctly produced by the algorithm. The space of 

sets of k non-overlapping subtrees of tree T is the same as that of forest F, added with {T} if k = 1. 

Therefore ZMAXk(T) = ZMAXk(F) for all k >1 (step 2), and ZMAX1(T) = max{ZMAX1(F), Z1({T})} 

(steps 2 and 3), which proves the theorem. 

A.2  Time complexity of Maximize_Z algorithm 

Let t(T) be the time required for processing tree T. It can be defined recursively: 
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where T1, …,Tm are the immediate subtrees of T, m ≥ 2, ni ≥ 1 is the number of leaves in subtree i, 

and , and A, B, C∑= inn 1 and C2 are implementation dependent constants.

Lemma 4.  for all i. Proof omitted as trivial. 0 if ,
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Corollary 5. Utilizing lemma 4 and the facts that m ≥ 2 and ni ≥ 1 for all i, we infer 
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Proof by induction. If T is a leaf, the theorem holds trivially. Otherwise, let us assume that the 

theorem holds for each immediate subtree Ti of T. Then, 
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By reduction and applying corollary 5 to the middle group we get 
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which proves the theorem. 

Theorem 7. For any tree T holds 2

2
)( nDTt ≥ , where D = min{A, 2C2}. 
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Proof by induction. If T is a leaf, the theorem holds trivially. Otherwise, let us assume that the 

theorem holds for each immediate subtree Ti of T. Then, 
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which proves the theorem. 

A.3  Space complexity of Maximize_Z algorithm 

At any node locally, three vectors of dimensionality n or kmax are needed; one for the result of the 

most recent recursive call for immediate subtree T’, one for the forest F of already processed 

immediate subtrees, and one for the forest F ∪ {T’}. 

Memory for the locally stored vectors need not be allocated until after the first recursive call. Let 

T1 ⊃ … ⊃ Td be those trees in the recursion stack, for which the local memory has been allocated, 

and let n1 > … > nd be the number of leaves in the trees. The space needed for local vectors in the 

root nodes of all these trees is O(∑ ). Always processing the largest subtree first guarantees that 
=

d

i
in
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21
i
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n ≤+ holds for all i, 1 ≤ i < d, and thus . 1
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d

i
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The depth of the tree is O(log n) on the average, and O(n) in the worst case. If the number of 

subtrees is limited, then the space needed for a node is constant, and the space complexity of the 

algorithm is in the same class with the depth of the tree.  
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3  2  2  5  3  1  3  4  1  6       haplotype 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10      marker map 

                       marker 

 

Fig. 1. A marker map of ten markers and a sample haplotype. 

 

 

    mutation 
generation 0 
generation 1 
generation 2 
.... 
generation 20 
 
 
inherited region 
inherited alleles        5  3  1  3  4  1 
 
 

Fig. 2. A carrier of the mutation in generation 20 has inherited alleles from the ancestral 

chromosome in generation 0 around the gene locus. 

 25

DRAFT (accepted for publication in Information Sciences)



 

 2 3 5 1 5 1 1 2 5 2   Control 

 1 5 1 4 3 1 3 4 3 2   Control 

 2 5 5 2 4 1 3 5 6 1   Control 

 4 6 5 3 1 3 4 1 1 1   Affected 

 2 5 5 3 1 3 4 1 1 2   Affected 

 3 3 1 3 1 3 4 3 2 1   Affected 

 

Fig. 3. String-sorted set of haplotypes to the right from the location pointed by the arrow. 

  

 

                -----                       time 

                                     mutation 

 

         1---- 

            34--- 

             13---           

                            3411- 

 

   11252  13432  13561  34111  34112  34321 

 

Fig. 4. The haplotype tree, and also a possible genealogical tree, for the haplotypes and the pointed 

location in Figure 3. 
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Fig. 5. Analysis of the performance of TreeDT.  A: Gene localization power with different values of 

A, the proportion of disease-associated chromosomes that actually carry the mutation.  B: Gene 

localization power with different numbers of subtrees (parameter of the method, given in the 

legend) and different numbers of founders (population parameter; 1 for the highest set of curves, 2 

for the curves in the middle, and 3 for the lowest set of curves).  C: Gene localization power with 

different sample sizes.  D: Gene localization power with different maximum numbers of subtrees. 
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Fig. 6. A: The cumulative distribution of overall p values on 100 data sets, in which there were no 

DS genes.  B: The cumulative distribution of local p values on the same data (pooled over all the 

102 tested locations per data set).  C: Classification accuracy for the existence of a disease 

susceptibility gene.  
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Fig. 7. Comparison of the gene localization performance of TreeDT, HPM, multipoint TDT (m-

TDT), and TDT.  A: The baseline test setting.  B: The baseline setting with three founders.  C: The 

baseline setting with 15% missing data.  D: Comparison of TreeDT and HPM on Type 1 diabetes 

data. The known DS locus is denoted with a vertical line. 
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