Comparing SOAP Performance for Various
Encodings, Protocols, and Connections

Jaakko Kangasharju, Sasu Tarkoma, and Kimmo Raatikainen

Helsinki Institute for Information Technology
PO Box 9800, 02015 HUT, Finland
Tel: +358 50 384 1518, Fax: +358 9 694 9768
{jaakko.kangasharju,sasu.tarkoma,kimmo.raatikainen}@hiit.fi

Abstract. SOAP is rapidly gaining popularity as the Web service pro-
tocol. At the same time, small mobile devices with wireless access, in
particular to the Internet, are becoming more prevalent. At first look,
it would seem that SOAP as a protocol consumes quite a lot of net-
work bandwidth and processor time. Therefore its suitability for small
devices and wireless links needs to be evaluated. This paper presents
two optimizations that can be applied to typical uses of SOAP, message
compression and persistent connections, and measures their performance
in some common situations. Asynchronous messaging with SOAP is also
treated briefly. The measurements indicate that a suitable compression
scheme can save bandwidth substantially, and that the protocols un-
derlying the typical use of SOAP can be improved considerably in the
presence of unreliable high-latency networks.

Keywords: Measurement Of Wireless And Mobile Systems, Mobile And
Wireless Applications, Web Services Over Mobile And Wireless Networks

1 Introduction

Web services are a rising phenomenon in the network service world, and SOAP
is the protocol of Web services. One of SOAP’s benefits is that, being XML, it is
more human-readable than binary protocols and therefore easier to debug. An-
other often-mentioned benefit is the use of the ubiquitous HT'TP as a tunneling
protocol, which e.g. allows SOAP messages to penetrate firewalls.

A visible trend in future communications is a large increase in the use of mo-
bile terminals. These include small devices with limited processing power and
a wireless connection to larger networks. Any future ubiquitous communication
protocol should preferably be usable even on these devices. The main difficulties
in wireless communication compared to fixed links are significantly lower band-
width, which limits the amount of data that can be sent, and higher latency,
which limits the number of round trips a protocol can effectively make within a
communication.

The most common version of SOAP currently in use is SOAP 1.1 [9] while
SOAP 1.2 [10] is being prepared by the World Wide Web Consortium. The most

common underlying protocol used for SOAP messages is HTTP 1.0 [4]. SOAP 1.1
requires messages to be encoded as XML documents, which are not designed to
be space-efficient. While SOAP messages are fundamentally one-way, a common
use of SOAP is for synchronous RPC, which requires the application to wait for a
network round trip for each message sent. Additionally, HTTP 1.0 supports only
a single exchange per TCP connection, so each invocation requires an additional
round trip to first establish a connection. Thus typical current use of SOAP
would seem to accentuate the main problems in wireless communication.

The size of XML documents can possibly be overcome by compressing them
in some manner. Unfortunately, SOAP messages are often quite small, so typical
compression algorithms, such as the popular Gzip [5] supported by many HTTP
clients and servers, will not manage very well. There are indications that a binary
representation of XML, such as WAP Binary XML [11], could do better than
traditional compression in this case [7].

The latency problems caused by the need to reopen connections when using
HTTP 1.0 could be solved simply by moving to HTTP 1.1 [6], which supports
persistent connections. The SOAP programming framework could also offer asyn-
chronous operations, which could eliminate the effects of high latency for client
applications not needing synchronicity. Asynchronous operations could, for ex-
ample, be implemented on top of HT'TP’s synchronous request-response, but
it would also be possible to move to full asynchronicity even at the transfer
protocol level.

The problems of TCP over wireless links are well known [1] and several
improvements to TCP have been proposed [3]. Our work here is more concerned
on the impact of different TCP usage patterns on application performance, rather
than gaining improvements by modifying TCP itself. Apart from the compression
approaches mentioned above, a good XML-specific compressor is XMill [8], which
is, however, better suited to large documents. The MPEG-7 standard [2] also
includes a specification for a binary XML format.

In this paper we examine performance implications of alternatives to the
HTTP protocol binding for SOAP. The alternatives include use of plain TCP,
Gzip compression of XML documents, persistent TCP connections, and cache-
based tokenization of SOAP message items. The rest of the paper is organized as
follows: In Sect. 2 we describe what tests were run and in which environments,
in Sect. 3 we present our results, and Sect. 4 gives the conclusions based on the
results, as well as plans for extending this work in the future.

2 Test Description

A test system with easily exchangeable protocol implementations was set up to
measure the effects of the two above-mentioned optimizations, compression of
messages and persistent connections. Tests were run on several different connec-
tions to see how link quality degradation affects protocol performance. These
tests were intended to identify the benefits and drawbacks of different optimiza-
tions.

The SOAP framework used in testing was Apache Axis 1.0 running on Debian
GNU/Linux 3.0 with Linux version 2.4.18. The machines used for testing were
one desktop PC and two laptop PCs with the desktop PC having a fixed network
connection and the laptop PCs having a choice of fixed and wireless connections.
The desktop PC had a 1333 MHz AMD Athlon processor and 512 MB of main
memory. The laptop PCs’s model was HP Omnibook 500 with a 500 MHz Intel
Pentium III processor and 512 MB of main memory.

During testing the machines were in normal multi-user operation, but with
no other significant computation proceeding at the same time. Apache Axis is
implemented in the Java programming language; the Java versions used were
Java 2 SDK 1.4.1 on the desktop and Java 2 SDK 1.3.1 on the laptops, both
from Sun Microsystems. All network traffic generated by the tests was captured
with the Ethereal network traffic analyzer and saved for closer analysis.

Two basic scenarios, shown in Table 1, were designed. The intent of the
Deploy scenario was to measure the performance of a single typical invocation.
Accordingly, the invocation consisted of an Apache Axis deployment descriptor,
which is used to initialize a service with Axis. The Stress scenario was designed
to measure the performance of the system under a heavy load.

Table 1. The message exchange scenarios used in the tests

Scenario Description

Deploy The client sends a 391-byte XML document to the server in a SOAP mes-
sage (total size 655 bytes) and receives a 31-byte XML document back in
a SOAP message (total size 296 bytes)

Stress The client sends, as quickly as possible, 17472° times a 258-byte XML
document in a SOAP message (total size 652 bytes), each message receiving
a 195-byte XML document back in a SOAP message (total size 464 bytes)

@ 17472 equals 2 x 24 x 364; the test system was based on a calendaring application,
so the Stress scenario measures the cost of filling every half-hour of a year (minus a
day)

The protocols shown in Table 2 were intended mainly for testing the effects of
compression and persistent connections. The single asynchronous protocol was
only included as a rough start; it is not suitable for actual SOAP use, since it
is unable to correlate different messages together without major changes, and is
therefore incapable of proper two-way communication. None of these protocols
(apart from HTTP) is really designed for serious use. However, their performance
characteristics should be indicative of those of actual protocols with similar
designs.

As can be seen from the descriptions, each new protocol is a minor modifica-
tion of some other protocol. This is to maximize the chances that differences
in the protocol performance numbers are actually the result of the changes
made and not just random chance. For example, it was noticed that leaving

Table 2. The SOAP transfer protocols used in the tests

Protocol Description

HTTP The standard SOAP-over-HTTP binding shipped with Axis; synchronous
request-response is implemented with HTTP’s corresponding messages;
HTTP 1.0 is used so a single connection is used only for a single inter-
action

PTCP Messages consist of a content length in decimal followed by the actual
SOAP content as XML with messages sent directly over a TCP connec-
tion; each connection is closed after a single request-response interaction;
shipped with Axis for demonstration purposes

TCPZ The PTCP protocol modified to compress each message’s content with
Gzip prior to sending

Pers The PTCP protocol modified to keep connections open to permit several
interactions to be carried out over a single TCP connection

Perz The Pers protocol modified to compress each message’s content with Gzip
prior to sending

Bper The Pers protocol modified to compress each message’s content with an
XML tokenizer prior to sending

Pera The Pers protocol modified not to send response messages to permit the

client to continue processing immediately without needing to wait for the
server’s response

the application-level message buffer too small for the actual message caused
many-fold worsening in processing times; this was a clear difference between the
needs of the compressing and the non-compressing protocols.

The tokenizer used for Bper is a simple binary format inspired by WAP Bi-
nary XML [11]. It represents each XML element and attribute name as binary
values, caching new names for later use. Standard element and attribute names
used in SOAP messages are pre-cached. Integers, booleans, and dates are rep-
resented in a compact binary form, where the length of an integer’s or a date’s
representation depends on its size.

The implementation of the tokenizing in Bper is quite suboptimal. Due to
unfamiliarity with the Axis implementation at the time, it had to generate the
binary representation from the message’s XML representation. With the tok-
enizer implementation this necessitated parsing the XML at the sending end in
addition to the ordinary parsing done at the receiving end. Therefore the main
interest in the Bper protocol is the amount of data sent, and not the execution
time.

The main intent of the experimentation was to measure SOAP’s suitability
for wireless environments. Therefore the Stress scenario, where differences should
show more markedly, was run over four different connections, as described in
Table 3, to measure the effect the network’s degradation would have. The precise
configuration of each connection is shown in Fig. 1. The Wireless LAN card used
was Nokia D211 operating in ad hoc mode. Round trip times for the connections
were measured with the ping program, i.e. ICMP Echo packets, and are given

Table 3. The connections used in the Stress scenario

Connection Description

Localhost (LH) Client and server on the same machine, communicating over
the localhost network interface; round trip time 0.0 ms

LAN Client and server on different machines, both connected to the
same LAN; round trip time 0.1 ms

WLAN Client and server on different machines, both connected to the

same Wireless LAN; round trip time 2.3/2.5/4.4 ms

Routed WLAN (RW) Client and server on different machines with a five-hop network
route between them, the first hop of which is a Wireless LAN
link; round trip time 9.2/13.8/25.8 ms

Desktop Desktop Laptop Desktop

Laptop Laptop Laptop

LH LAN WLAN RW

Fig. 1. Test configuration for the different connections; solid lines indicate localhost
and wired connections, dashed lines indicate wireless connections

in minimum/average/maximum format, or as a single number where there was
no variation.

3 Test Results

In both scenarios, measurements were made of the amount of data each tested
protocol sent over the network. The measured amount was further split into pure
TCP packets (typically containing SYN, FIN, or ACK) and packets containing
actual data. The count for data packets includes the IP and TCP headers. Total
execution time was measured in the Stress scenario at the application level on the
server side over all four tested connections. There was no noticeable fluctuation
in the amount of data sent with different connections.

The amounts of data sent in the Deploy scenario are shown in Table 4. There
is more variation in the results than would be expected, especially concerning the
amount of pure TCP packets. This is explained by noting that the total number
of packets differs among protocols, mostly depending on how much application-
level buffering each protocol does. The amount of data sent by the Pera protocol

Table 4. The amount of data (in bytes) sent by the tested protocols in the single-
request-response Deploy scenario

Protocol Pure TCP Data packets Total data

HTTP 628 1399 2027
PTCP 628 1160 1788
TCPZ 560 678 1238
Pers 684 1165 1849
Perz 628 681 1309
Bper 560 583 1143
Pera 628 796 1424

Table 5. The amount of data (in bytes) sent by the tested protocols in the Stress
scenario

Protocol Pure TCP Data packets Total data

HTTP 10969736 27365474 38335210
PTCP 10967868 23138277 34106145
TCPZ 9773372 12566356 22339728

Pers 3824 21018279 21022103
Perz 4232 12655943 12660175
Bper 5592 5206834 5212426
Pera 95964 11528744 11624708

is low only because it does not send a response message; if it did, its amount of
data should be approximately equal to that of PTCP and Pers.

The amount of actual data sent is what would be expected. HTTP sends
more data than the other protocols, since it has more extensive message headers.
A protocol usable in practice would definitely require more headers than the
simplistic message length included in PTCP (and by extension, all the others).

The effect of compression is relatively minor: Gzip compresses by approx-
imately 40% and the binary representation by 50%. When taking also in the
account the proportion pure TCP data takes of the communication, the com-
pression does not have much advantage in this case.

The amounts of data sent in the Stress scenario are shown in Table 5. As
mentioned earlier, these amounts remained effectively static independent of the
connection used, so these numbers apply to all connections.

In this case the advantages of persistent connections are clearly visible, with
the persistent protocols piggybacking almost all of their TCP ACKs in data
packets. This permits the uncompressing Pers protocol to achieve a lower amount
of total sent data than even the compressing TCPZ.

Again, as before, the amount of data sent by the Pera protocol is some-
what misleading. By not sending response messages, it manages to cut down the
amount of sent data by half without any compression. If there were response
messages, its amount in data packets should approach that of PTCP and Pers.

Table 6. Average execution times in milliseconds with mean deviations measured in
the Stress scenario over the Localhost and LAN connections

Protocol| LH Total |LH Single] LAN Total |LAN Single
HTTP [130336+0.09% 7.460(|145049+1.06% 8.302
PTCP [106698+0.13% 6.107(155599+0.66% 8.906
TCPZ [158209+0.11% 9.055|204916+0.67% 11.728
Pers 92819+0.12% 5.312(128290+0.12% 7.343
Perz 14203940.21% 8.130(19888240.10% 11.383
Bper 190944+1.35% 10.929(265647+0.26% 15.204
Pera 405561+0.87% 2.321| 36178+2.82% 2.071

The messages sent in this scenario are only slightly larger than the ones in
the Deploy scenario, so the performance of Gzip is also only slightly better, with
compressed messages being approximately 50% of the size of the originals.

The binary representation’s utilization of XML item caching permits it to
compress messages to under 25% of their original size in this kind of repetitive
scenario. While in this case the messages are highly similar, there would also be
similarities in attributes and SOAP headers in more general cases, which should
still permit this representation to have an advantage over Gzipped XML.

The XML item caching is not without its drawbacks, though. It requires that
no messages are lost or reordered during transit, and that both ends can keep
their caches synchronized, so for example application restarts are not accept-
able. In this test scenario the reliability in messaging is achieved through TCP
and a non-mobile terminal, and the simplicity and single purpose of the test ap-
plications preclude the possibility of caches falling out of synchrony. When the
client is mobile, however, messages are typically lost during an address-changing
handover. In addition, it is possible that the application protocol on top of the
transport layer does not feed the messages upward sequentially. Therefore the
protocol would need to ensure neither of these happens in actual situations.

The measured execution times, both total time taken and average time per
invocation, for the Localhost and LAN connections are shown in Table 6. There is
not much difference between these two connection types, and from the deviations
it can be seen that there is little variation in measured times from one execution
to another. The only noteworthy issue is that the execution time for the Pera
protocol does not increase, indicating that the network is not its bottleneck at
these bandwidths.

The times for the other two connections, WLAN and Routed WLAN, are
shown in Table 7, for both total time and average per-invocation time as before.
The measurements show considerable fluctuation depending on when measure-
ments were made. From the deviations it can be seen that the times for the
persistent protocols fluctuate wildly. This is an artifact of the Wireless LAN;
its performance characteristics varied quite a lot depending on the measurement
time.

The degradation in performance of the non-persistent protocols is particu-
larly striking, which is even better visible in Fig. 2 summarizing the average

Table 7. Average execution times in milliseconds with mean deviations measured in
the Stress scenario over the WLAN and Routed WLAN connections

Protocol| WLAN Total [WLAN Single RW Total RW Single
HTTP |509549+24.07% 29.164(2126201+ 1.30% 121.692
PTCP |457714+10.95% 26.197|2253455+ 4.01%| 128.975
TCPZ |475750+13.96% 27.229(2195746+ 2.56% 125.672
Pers 255564+ 6.02% 14.627| 393324+42.54% 22.511
Perz 4172714£26.04% 23.882| 391899+33.86% 22.430
Bper 415225+ 6.62% 23.765| 416045+27.32% 23.812
Pera 81396+ 1.46% 4.659| 113035+20.68% 6.469

times for all protocols and connections. The main cause of this degradation is
the fickle nature of the Wireless LAN, which proved to be quite willing to drop
ACKs in response to connection-opening SYNs, causing several-second delays as
the SYN sender’s timeout triggered.

The performance of the compressing persistent protocols can even be seen
to improve when moving from the WLAN connection to the Routed WLAN
connection. This is most probably an artifact of the fickleness of the Wireless
LAN. However, since the performance of the compressing protocols in Routed
WLAN is similar to that of Pers, it would seem to imply that the time taken for
compression is not a significant factor in the runtime anymore.

4 Conclusions

From the measurements we can see that the default way of using SOAP is sig-
nificantly suboptimal, especially under heavy communication load in slower net-
works. In the test scenarios the main problem was the need to open new connec-
tions for new invocations, mainly because Wireless LAN bandwidth was not a
bottleneck when invocations were synchronous. However, the effect of bandwidth
reduction is clearly visible with the asynchronous Pera protocol.

The generic Gzip compression algorithm manages to decrease message size
only by about 50%. Observations made during testing reveal that compressing
and decompressing also consume significant amounts of processor time, which is
directly visible in measured execution times on Localhost and LAN. In the Stress
scenario the binary format manages to decrease message size by approximately
75%.

The processor time used is especially significant when considering the power
of devices typically having wireless links, such as phones or PDAs. Preliminary
experimentation seems to indicate that the extra processing time incurred by
binary compression can be mostly eliminated by directly generating the com-
pressed format, as would be expected. Furthermore, significant speedups have
been achieved by parsing a binary XML format directly without going through
the textual form [7].

Keeping connections open is clearly a benefit in the Stress scenario due to
the heavy load the scenario places on the network. The effects become more

HTTP — h
PTCP — h
TCPZ — L
o
@]
£ Pers— L
= LH
3 Perz— L LAN
WLAN
Bper | RWLAN
Pera — L
[[[[[
0 500 1000 1500 2000

Time (s)

Fig. 2. Average times for all protocols and connections

pronounced with increased connection latency and unreliability, as would be
expected. Persistence of connections would also benefit interactive applications
communicating with a small number of servers, since it eliminates the round trip
needed in TCP connection establishment. This could, and in the future probably
will, also be achieved by using HTTP 1.1 with its built-in persistent connections.

The performance of the Pera protocol shows that further reducing the effects
of latency is possible for applications able to send several messages before needing
possible responses to any of them. This could include e.g. event-based systems,
where no application-level response is returned to the event generator. However,
this is more of an issue for the programming framework and not the protocol,
since an asynchronous interface can be built on top of a synchronous protocol if
needed.

The latency becomes even more of a problem when considering wireless tech-
nology used in mobile phones, such as GPRS. Measurements show that the
average latency for a GPRS-based connection equivalent to the Routed WLAN
is between 800 and 900 ms with large variations. This kind of connection would
make it completely unsuitable to use a synchronous interface if it could at all be
avoided. A GPRS connection also has a much lower bandwidth than Wireless
LAN. Preliminary experiments would seem to indicate that the Stress scenario
with the Pera protocol would take over an hour to run with a GPRS-based
connection.

Future plans are to extend these tests to also cover a GPRS-based connec-
tion. For these tests it would also be useful to have a new protocol designed to
implement the optimizations shown most beneficial by the above results. The
future tests are also expected to cover a new scenario based on some real-world
situation with a heavy network load.

References

1. Elan Amir, Hari Balakrishnan, Srinivasan Seshan, Randy Katz. Efficient TCP over
networks with wireless links. In Proceedings of the Fifth IEEE Workshop of Hot
Topics in Operating Systems, May 1995.

2. Olivier Avaro, Philippe Salembier. MPEG-7 Systems: Overview, IEEE Transac-
tions on Circuits and Systems for Video Technology, 11(6):760-764, June 2001.

3. Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan, Randy Katz. A
comparison of mechanisms for improving TCP performance over wireless links,
IEEE/ACM Transactions on Networking, 5(6):756—769, December 1997.

4. Tim Berners-Lee, Roy Fielding, Henrik Frystyk Nielsen. RFC 1945: Hypertext
Transfer Protocol — HTTP/1.0, May 1996. http://www.ietf.org/rfc/rfc1945.
txt

5. Antaeus Feldspar. An FExplanation of the DEFLATE Algorithm, August 1997.
http://www.gzip.org/deflate.html

6. Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk Nielsen, Larry Mas-
inter, Paul Leach, Tim Berners-Lee. RFC 2616: Hypertext Transfer Protocol —
HTTP/1.1, June 1999. http://www.ietf.org/rfc/rfc2616.txt

7. Marc Girardot, Neel Sundaresan. Millau: an encoding format for efficient repre-
sentation and exchange of XML over the Web. In Ninth International World Wide
Web Conference, May 2000. http://www9.org/w9cdrom/154/154 . html

8. Hartmut Liefke, Dan Suciu. XMill: an efficient compressor for XML data. In Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, May 2000.

9. World Wide Web Consortium (W3C). W8C Note: Simple Object Access Protocol
(SOAP) 1.1, May 2000. http://www.w3.org/TR/SOAP/

10. World Wide Web Consortium (W3C). W38C Proposed Recommendation: SOAP
Version 1.2 Part 1: Messaging Framework and SOAP Version 1.2 Part 2: Adjuncts,
May 2003. http://www.w3.org/TR/2003/PR-soapl2-part1-20030507/ and http:
//www.w3.org/TR/2003/PR-soapl2-part2-20030507/

11. World Wide Web Consortium (W3C). W3C Note: WAP Binary XML Content
Format, June 1999. http://www.w3.org/TR/wbxml/

