

 Helsinki Institute for Information Technology HIIT, founded in 1999,
is a joint research institute of University of Helsinki and
Helsinki University of Technology.

HIIT conducts internationally high-level strategic research in
information technology and related multi-disciplinary topics,
especially in areas where Finnish IT industry has or may reach
a significant global role. HIIT works in close co-operation with
Finnish universities, research institutes, and industry, aiming to
improve the contents, visibility, and impact of Finnish IT
research to benefit the competitiveness and progress of the
Finnish information society. HIIT also aims at creating a strong
network of international partnerships with leading foreign
research universities and institutions.

CONTACTS
WWW: http://www.hiit.fi/
Tel: +358-9-85012313; Fax: +358-9-6949768
Postal address: P.O.Box 9800, 02015 HUT, Finland
Visiting: High Tech Center, Tammasaarenkatu 3, Helsinki, Finland

S
oininen (ed.), P

itkänen, V
älim

äki, O
ksanen, R

eti: M
obileIPR

 Final R
eport

 H
IIT Tech reports 2003-3

STATE OF THE ART IN ENABLERS FOR APPLICATIONS
IN FUTURE MOBILE WIRELESS INTERNET

Sasu Tarkoma, Ramya Balu, Jaakko Kangasharju, Miika Komu, Mika Kousa,
Tancred Lindholm, Mikko Mäkelä, Marko Saaresto, Kristian Slavov, Kimmo Raatikainen

September, 2004

HIIT
Publications
2004-2

STATE OF THE ART IN ENABLERS FOR APPLICATIONS IN FUTURE

MOBILE WIRELESS INTERNET

Sasu Tarkoma, Ramya Balu, Jaakko Kangasharju, Miika Komu, Mika Kousa,
Tancred Lindholm, Mikko Mäkelä, Marko Saaresto, Kristian Slavov, Kimmo Raatikainen

Helsinki Institute for Information Technology HIIT
Tammasaarenkatu 3, Helsinki, Finland
P.O. BOX 9800
FI-02015 TKK, Finland
http://www.hiit.fi

HIIT Publications 2004-2
ISBN 951-22-7332-2 (electronic)
ISSN 1458-946X (electronic)
URL: http://www.hiit.fi/publications/pub_files/fc-state-of-the-art-2004.pdf

Copyright © 2004 held by the authors

Contents

1 Introduction 1

2 Event-based Systems 7
2.1 Introduction . 7
2.2 Event Models . 9

2.2.1 Events . 10
2.2.2 Event Model . 11
2.2.3 Routing . 12
2.2.4 Content-based Routing 13
2.2.5 Requirements for Mobile Computing 16

2.3 Event Standards and Specifications 19
2.3.1 Java Delegation Event Model 19
2.3.2 Java Distributed Event Model 19
2.3.3 Java Message Service 20
2.3.4 CORBA Event Service 25
2.3.5 CORBA Notification Service 30
2.3.6 CORBA Management of Event Domains 35
2.3.7 W3C DOM Events 37
2.3.8 Web Services Eventing (WS-Eventing) 37
2.3.9 COM+ and .NET . 38
2.3.10 Websphere MQ . 43

2.4 Event Systems . 44
2.4.1 The Cambridge Event Architecture 44
2.4.2 Scalable Internet Event Notification Architecture . . 46
2.4.3 Scribe . 51
2.4.4 Elvin . 52
2.4.5 JEDI . 55
2.4.6 ECho . 58
2.4.7 JECho . 58
2.4.8 Rebeca . 59
2.4.9 Gryphon . 60

i

CONTENTS

2.4.10 STEAM . 62
2.4.11 Rapide . 63

2.5 Conclusions . 63

3 XML Protocols 67
3.1 XML . 67
3.2 Web Services . 69
3.3 Protocols . 71

3.3.1 History . 71
3.3.2 Features . 72
3.3.3 Current State . 73
3.3.4 Implementations . 74

3.4 XML over Wireless . 75
3.4.1 Problem Areas . 75
3.4.2 Transfer Protocols 75
3.4.3 Compression . 76

3.5 Conclusions . 78

4 Synchronization 81
4.1 Introduction . 81
4.2 Coda . 83

4.2.1 Storage and Update Model 84
4.2.2 Coda as an MDIB 88
4.2.3 Practical Issues . 89

4.3 InterMezzo . 89
4.3.1 Storage and Update Model 90
4.3.2 InterMezzo as an MDIB 92
4.3.3 Practical Issues . 93

4.4 Bayou . 93
4.4.1 Storage and Update Model 94
4.4.2 Bayou as an MDIB: Practical Issues 98

4.5 Key-based Routing . 99
4.5.1 Plaxton-Rajaman-Richa KBR 100

4.6 OceanStore . 101
4.6.1 Storage and Update Model 104
4.6.2 OceanStore as an MDIB 106
4.6.3 Practical Issues . 108

4.7 SyncML . 108
4.7.1 Using SyncML in an MDIB 111
4.7.2 Deployment Issues 112

4.8 Synchronization Policies . 112

ii

CONTENTS

4.9 Generic Data Reconciliation Methods 114
4.10 Strategies for Conserving Bandwidth 115

4.10.1 Data Compression 116
4.10.2 Delta Transfers . 116
4.10.3 Content Adaptation 118
4.10.4 Operation Shipping 118

4.11 Conclusions . 119

5 Mobile Presence 121
5.1 Introduction . 121

5.1.1 Concepts . 121
5.1.2 Presence and Context 122
5.1.3 History . 122
5.1.4 Challenges . 124

5.2 Existing Presence Technology 127
5.2.1 Open Mobile Alliance 127
5.2.2 The Parlay Group 128
5.2.3 Internet Engineering Task Force 129
5.2.4 Service Integrators 133

5.3 Discussion . 134
5.3.1 Prototypes . 134
5.3.2 Fundamental Trade-offs 136
5.3.3 Online Identity . 137
5.3.4 Embedded Presence 140
5.3.5 Related Research 140

5.4 Conclusions . 141

6 Host Identity Protocol 143
6.1 Introduction . 143
6.2 Background . 143
6.3 Architecture Overview . 146

6.3.1 Host Identity . 146
6.3.2 Other Representations of Host Identity in HIP 147
6.3.3 Base Exchange . 147
6.3.4 Security and Privacy 148
6.3.5 Multihoming . 148
6.3.6 Mobility . 148
6.3.7 Rendezvous Server 150
6.3.8 Native Application Programming Interface 150
6.3.9 Advantages and Disadvantages 151

6.4 Related Work . 153

iii

CONTENTS

6.4.1 Mobile IPv6 . 153
6.4.2 MobIKE . 153
6.4.3 SCTP . 153

6.5 Current Status . 154
6.5.1 Standardization Status 154
6.5.2 HIP Projects . 155
6.5.3 Meetings . 155

6.6 Conclusions . 162

7 SIP and Events 163
7.1 Introduction . 163
7.2 Overview of SIP . 164

7.2.1 Session Initiation Protocol (SIP) 164
7.2.2 Terminologies in SIP 164
7.2.3 Steps Involved in Establishing a Session 166
7.2.4 Methods and Response in a SIP Transaction 166
7.2.5 Features of SIP . 168

7.3 SIP Research Areas . 169
7.3.1 Active Research Topics 169
7.3.2 Working Groups in IETF 171
7.3.3 Work in the Third Generation Partnership Project on

SIP . 172
7.4 SIP and Event Architectures 174

7.4.1 An Introduction to Events in Distributed Systems . . 175
7.4.2 General Requirements of an Event Framework . . . 175
7.4.3 Design Patterns for Event Architectures 176
7.4.4 SIP Event Notification 176
7.4.5 CORBA Notification Service 179
7.4.6 JINI Event Architecture 180
7.4.7 GRID SOAP Event Systems 180
7.4.8 Comparison between SIP, CORBA, GRID SOAP, and

JINI Events . 180
7.5 SIP and Java . 181

7.5.1 JSIP — A Prototype Implementation of SIP Extensions181
7.5.2 SIP and JAIN . 181
7.5.3 SIP for J2ME . 182
7.5.4 SIP Servlets . 182
7.5.5 Interworking of Various Java APIs with SIP 182
7.5.6 Open Source SIP Implementations 183

7.6 Related Work . 184
7.6.1 Medical Event-based Monitoring System 184

iv

CONTENTS

7.6.2 Application of SIP to Ubiquitous Computing 184
7.6.3 SIP for Emergency Systems 185
7.6.4 SIP Extensions for Communicating with Networked

Appliances . 185
7.7 Summary . 186

8 Context Modeling 187
8.1 Introduction . 187
8.2 Requirements for Context Representation 189
8.3 Classification of Context Information 190
8.4 Ontologies . 191

8.4.1 CC/PP . 193
8.4.2 Device Independence Working Group 193
8.4.3 RDF . 194
8.4.4 OWL Web Ontology Language 194

8.5 Formal Approaches to Context Representation 195
8.5.1 Comprehensive Structured Context Profiles (CSCP) 196
8.5.2 Model for Mobile User Context 196
8.5.3 ASC-Model and Context Ontology Language (CoOL) 198
8.5.4 Context Modeling via Dynamic Context Discovery . 199
8.5.5 GAIA . 200
8.5.6 Context Broker Architecture (CoBrA) 204
8.5.7 SOCAM and CONON 206

8.6 Discussion . 209

v

CONTENTS

vi

List of Figures

2.1 General model of the event source and event listener 12
2.2 Example event model taxonomy. 16
2.3 Distributed event systems in the taxonomy. 17
2.4 The OpenFusion Notification Service with JMS publish-sub-

scribe interoperability. 24
2.5 The OpenFusion Notification Service with JMS point-to-point

interoperability [Pri01] . 25
2.6 The standard CORBA client-server model of invoking oper-

ations from client to the target object. 26
2.7 Example of an event propagation implementation. 27
2.8 Pull Model and the Event Channel. 28
2.9 The hybrid model mixing Push and Pull models. 28
2.10 Components in the CORBA Notification Service [GCSO01]. 31
2.11 The structured event: Event header and event body. 34
2.12 CORBA Notification Service channel federation. 36
2.13 The COM+ Event Service. 39
2.14 MSMQ Product Architecture 42
2.15 A publish-register-notify event architecture [BMH+00]. . . . 45
2.16 Event propagation in JEDI. 56

3.1 An Example XML Document 68
3.2 The Structure of a SOAP Message 72

4.1 Venus states and state transitions. 86
4.2 Symmetric two-way synchronization in InterMezzo 91
4.3 Anti-entropy executed at the server. 95
4.4 Bayou write to a group calendar. 97
4.5 Routing according to Plaxton et al. 101
4.6 Object lookup according to Plaxton et al. 102
4.7 The path of an OceanStore update 106

vii

LIST OF FIGURES

6.1 A simple end-host multihoming example 144
6.2 A simple mobility example 145

7.1 Session Establishment . 167
7.2 Event Subscription and Notification 178
7.3 IMS architecture [O’D03] . 183

8.1 An Example of expressing a dependency with OWL 209

viii

Chapter 1

Introduction

One significant trend in software for future mobile systems is the require-
ment of ever-faster service development and deployment. An immediate
implication has been the introduction of various service/application frame-
works/platforms. Middleware is a widely used term to denote a set of
generic services above the operating system. Although the term is pop-
ular, there is no consensus of a definition [ASC+00]. Typical middleware
services include directory, trading and brokerage services for discovery,
transactions, persistent repositories, and different transparencies such as
location transparency and failure transparency. The importance of middle-
ware as a set of generic services above the operating system and trans-
port stack is widely recognized.

The objective of the Fuego Core project is to specify the set of funda-
mental enabling middleware services for mobile applications on future mo-
bile environments and to implement two research prototypes. The project
has adapted a two-level approach to develop the necessary middleware
services. On the top level, the work areas characterize the long-term vision
in research for middleware for the future mobile Internet. On the bottom
level, the work areas are further split into work items that are addressed in
the project.

The work areas in the Fuego Core include

Adaptive Applications
Adaptability is one of the key research areas in nomadic computing.
The basic principle of adaptability is simple. When the circumstances
change, then the behavior of an application changes according to
the desires of the user. Therefore, we need means to collect and
present user preferences, which may, in turn, depend on location,
time, access device, and properties of connectivity.

1

CHAPTER 1. INTRODUCTION

The basic principle of adaptability, i.e. the behavior of an application
changes when the circumstances change, requires that the system
detects changes and notifies about them. Therefore, the generic
service elements must include Environment Monitoring and Event
Notification.

In environment monitoring there are three primary issues:

• discovery (which equipment is available),

• service location (which services are available), and

• available capabilities (computing power, various storage capa-
bilities, available capacity on communication paths).

Dynamic Reconfigurable Services
Situations in which a user moves with her end device and uses in-
formation services are challenging. Moreover, the nomadic user of
tomorrow will not appreciate a static binding between her and an
access device; not even in the case of multi-mode access devices
that can handle several access technologies including wireless LAN,
short-range radio, and packet radio. It must be possible to move a
service session (or one endpoint of a service session) from one de-
vice to another.

In these situations the partitioning of applications and the place-
ment of different co-operating parts is a research challenge. The
support system of a nomadic user must distribute, in an appropri-
ate way, the parts among the end-user system, network elements,
and application servers. In addition, when the execution environment
changes in an essential and persistent way, it may be beneficial to
redistribute the co-operating parts. The redistribution or relocation
as such is technically quite straightforward but not trivial. On the
contrary, the set of rules on which the detection of essential and per-
sistent changes is based is a challenging research issue.

In the dynamic configuration area we have a huge space of research
items. On the conceptual level there are research issues related to
profiles, various kinds of context also including the social context,
roles, and trust. On the technical level we must solve the problems
related to authentication, authorization, and delegation.

Mobile Distributed Information Base
File and information synchronization between different devices is al-
ready available but in quite primitive forms. A single information base

2

for a user — possibly different views for her different roles — and for
multiple user groups is a fundamental enabler for seamless recon-
figuration of the end-user system for a mobile user and for seamless
user roaming from one role to another one.

The mobile distributed information base should provide a consistent,
efficiently accessible, reliable, and highly available information base.
This implies a distributed and replicated world-wide “file system” that
also supports intelligent synchronization of data after disconnections.
Shared access and support of transactional operations also belong
to the list of requirements.

To summarize, the key enablers for mobile distributed information
base include

• distributed and replicated world-wide information storage that
provides data consistency, efficient and reliable access, and
high availability,

• intelligent synchronization after disconnections, and

• distributed mobile transactions with flexible correctness criteria.

Of the fundamental enablers for future mobile applications, the Fuego
Core project has focused on seven work items:

Event-based systems
This work item addresses the fundamental principle of adaptability
— the behavior of an application changes when the circumstances
change. Therefore, the system must detect changes and notify about
them. In other words, the middleware solution must provide service
elements for Environment Monitoring and Event Notification.

XML issues on profile presentation, protocol, and transport over
wireless

XML is starting to be the key presentation format for various kinds of
information about capabilities, preferences, and properties. There-
fore, middleware for the mobile Internet must provide an efficient way
of exchanging XML content and of supporting SOAP.

Intelligent synchronization
Of the fundamental enablers for mobile distributed information base
intelligent synchronization is selected as the starting point. The as-
sumption is that an existing storage system, such as Coda, Ocean-
Store, or InterMezzo, can be used in a mobile and wireless environ-
ment with file synchronization. The objective is to build mechanisms

3

CHAPTER 1. INTRODUCTION

that take care of decisions on what and when to synchronize. In ad-
dition, the use of three-way merging of XML documents is examined
in synchronization.

Instant Messaging and Presence
The mobile user should not be required to explicitly define her/his
context (presence) information and forward this information to other
people. Instead, the computing environment should do this proac-
tively on the user’s behalf. But before a proactive presence service
becomes a reality for the mobile user, several problems need to be
solved.

Mobility and Multi-homing based on Host Identity Protocol (HIP)
Today, there are new requirements for end-host mobility and multi-
homing, together with the necessity for host-to-host signaling secu-
rity. Addressing these within the limitations of the current TCP/IP
architecture has turned out to be hard; therefore, it may be neces-
sary to do some radical re-engineering of the architecture to bring
the TCP/IP protocol suite up to par with the new requirements.

The key elements in considering novel solutions to IP-based end-
host mobility and multihoming are a need for a new cryptographic
namespace, a need for a new protocol layer between IP and the
Internet transport layer (TCP/UDP/SCTP), and privacy and security
issues.

Session Initiation Protocol (SIP)
The SIP protocol has been selected as the signaling protocol for third
generation wireless networks by 3GPP. The main research items for
SIP will be the event packages of SIPPING and SIMPLE. In addition,
an analysis of the interworking of the Fuego event system with SIP
events will be performed. The investigation will focus on the required
event package extensions for SIP, such as filtering and buffering.

Context Modeling
Context awareness can be described as the process of adapting to
the current situational characteristics of the computing and user en-
vironment. This adaptation is grounded on context modeling, i.e.
the process of extracting higher-level context characteristics from the
lower-level characteristics, e.g. guessing the type of a social happen-
ing based on the time of day, user’s calendar information, and the
names of the people who are present. One of the central challenges

4

in context modeling is due to the fact that the set of possible char-
acteristics of interest is open. Another challenge is that the relations
between different characteristics may be temporal in nature, i.e. the
relations may vary between situations. We need a way to present
and maintain context information in a way that addresses these chal-
lenges and is suitable for the mobile environment.

This report examines the relevant related work and background for the
work items. Event systems, with an emphasis on mobility, are presented in
chapter 2. XML use over wireless is examined in chapter 3 and synchro-
nization in the wireless and mobile environment in chapter 4. The state
of the art in mobile presence is presented in chapter 5. The background
for Host Identity Protocol is examined in chapter 6. SIP and SIP events
are presented in chapter 7, and finally context modeling is investigated in
chapter 8.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Event-based Systems

2.1 Introduction

This chapter presents an overview of event systems and distributed event
frameworks with an emphasis on the special requirements presented by
mobile computing. By mobile or ubiquitous computing we mean the new
field of research created by wireless communication and the introduction
of small, mobile devices. Traditionally, event-based systems are based on
a number of event sources and event sinks. Sources produce events and
they are delivered to event sinks that have a priori registered to receive
them. An event-based framework can be decomposed into two essential
parts:

• Event detection, which deals with the detection of the occurrence of
a particular event of interest.

• Event notification, which is the act of notifying interested parties that
an event has occurred.

Distributed architectures are based on middleware that provides the
interoperability layer required for heterogeneous cross-operating-system
and cross-language operation and communication. Components from dif-
ferent systems and different manufacturers can interoperate using mid-
dleware such as CORBA, where interface definitions created using IDL
(Interface Definition Language) may be shared.

Many existing platforms employ the synchronous model of method in-
vocation, in which operations are performed on passive objects. This
model is insufficient for reactive environments, where components need to
react to changes, or events, within the system and give timely responses.

7

CHAPTER 2. EVENT-BASED SYSTEMS

An option would be to poll the states of objects, but polling too frequently
burdens the system and polling too infrequently delays the communica-
tion [BMH+00]. Asynchronous events support different application types
as identified by [BMH+00]:

• Group interaction

• Multimedia support (multimedia control through rules)

• Mobility

• Alarms and exceptions

• Management

Reliable and efficient asynchronous event detection and event notifica-
tion are vital for the development of the next-generation distributed soft-
ware for mobile Internet-aware devices. Event frameworks provide a plug-
and-play architecture for creating distributed applications.

Currently middleware solutions, such as Java, from the desktop world
are being introduced into the wireless world, where the requirements are
different. Small and wireless devices have limited capabilities compared
to desktop systems: their memory, performance, battery life, and connec-
tivity are limited and constrained. The requirements of mobile computing
need to be taken into account when designing an event framework that
integrates with mobile devices. From the mobility and wireless viewpoint
event systems can be divided into three distinct categories:

1. Traditional event systems designed for fixed network operation

2. Event systems that support intermittent clients using a client-server
protocol and possibly roaming between access nodes

3. Ad-hoc networks

The first category is the most researched and most of the architectures
presented in this chapter fall into this category. Several architectures sup-
port intermittent clients and roaming between access nodes. Ad-hoc event
architectures are currently emerging, and they are only mentioned briefly
in this chapter.

From the small device point of view, message queuing is a frequently
used communication method because it supports disconnected operation.
When a client is disconnected, messages are inserted into a queue, and

8

2.2. EVENT MODELS

when a client reconnects the messages are sent. The distinction be-
tween popular message-queue-based middleware and notification sys-
tems is that message-queue-based approaches are a form of directed
communication, where the producers explicitly define the recipients. The
recipients may be defined by the queue name or a channel name, and
the messages are inserted into a named queue, from which the recipient
extracts messages.

Notification-based systems extend this model by adding an entity, the
event service or event dispatcher, that brokers notifications between pro-
ducers of information and subscribers of information. This undirected com-
munication supported by the notification model is based on message pass-
ing and retains the benefits of message queuing. In undirected communi-
cation the publisher does not necessarily know which parties receive the
notification. This also applies to message-oriented middleware that sup-
ports publish-subscribe-style communication [SAS01], such as the Java
Message Service (JMS) [Sun01].

Undirected communication decouples producers and consumers from
each other. In addition, many systems support filtering and pattern de-
tection that are used to reduce the amount of transmitted information and
to improve the accuracy of notifications. Content-based routing is flexible
because it does not require configuration information pertaining to channel
names. Undirected communication may also be used to deliver the same
set of information to a number of client devices. However, this requires
associating user subscription information with a set of devices [SAS01,
CDN01].

This chapter is structured as follows: section 2.2 introduces event mod-
els, event routing, and a number of requirements for mobile clients, sec-
tion 2.3 presents event standards and specifications such as the CORBA
Notification Service, JMS, and the COM+ and .NET event models, sec-
tion 2.4 presents research prototypes and examines the support for dis-
connected operation and mobility in each of the presented event systems,
and finally, section 2.5 presents the conclusions.

2.2 Event Models

Event models consist of event sources, event listeners, notification ser-
vices, filtering services, and event storage and buffering services. In addi-
tion, there may be one or more authentication schemes to enforce secu-
rity and access control. This section focuses on the general definition of
events and event models.

9

CHAPTER 2. EVENT-BASED SYSTEMS

2.2.1 Events

An event represents any discrete state transition that has occurred and is
signalled from one entity to a number of other entities. For example, a suc-
cessful login to a service or the firing of detection or monitoring hardware
can be seen as events.

The firing of each event is either deterministic or probabilistic. A source
can generate a signal every second making it deterministic. A stochas-
tic source follows some probabilistic model that can be described using,
for example, a Markov chain. Both event qualities can be modeled by
building statistical or stochastic models of the firing behavior of the event
source. For example, a correlation analysis can be made between a se-
ries of event occurrences in time or between two event sources. Such an
analysis would measure how strongly one event implies the other or how
two event source firings are related.

Events may be categorized by their attributes, such as which physical
property they are related to. For instance spatial events and temporal
events denote physical activity. Moreover, an event may be a combination
of these, for example an event that contains both temporal and spatial
information.

Events can be categorized into taxonomies on their type and complex-
ity. More complex events, called compound events, can be built out of
more specific simple events. Compound events are important in many
applications. For example, a compound event may be fired

• in a hospital, when the reading of a sensor attached to a patient
exceeds a given threshold and a new drug has been administered in
a given time interval,

• in a location tracking service, where a set of users are in the same
room or near the same location at the same time, or

• in an office building, where a motion detector fires and there has
been a certain interval of time after the last security round.

Event-based interaction can be

• discrete or

• continuous, as event streams.

Events can also have different prioritizations. Event aging assigns an ex-
piry time to each event notification. Event expiration prevents the spread-
ing of obsolete information.

10

2.2. EVENT MODELS

2.2.2 Event Model

The standard models for client/server communication in distributed object
computing are based on synchronous method invocations. For exam-
ple, COM+, Java RMI, and CORBA use synchronous calls (CORBA 3.0
supports asynchronous invocations). This approach has several limita-
tions [GCSO01]:

• Tight coupling of client and server lifetimes. The server must be
available to process a request. If a request fails the client receives
an exception.

• Synchronous communication. A client must wait until the server fin-
ishes processing and returns the results. The client must be con-
nected for the duration of the invocation.

• Point-to-point communication. Invocation is typically targeted at a
single object on a particular server.

Mobile clients and large distributed systems motivate the use of asyn-
chronous and anonymous one-to-many models of communication. Mod-
els based on events address the limitations of the standard client/server
paradigm by introducing two roles: consumers and producers. Since event
models employ differing technical terms, in this chapter we consider event
consumers, listeners, sinks, and respectively event producers, sources,
and suppliers to be synonymous.

The event model consists of event listeners and event sources. A lis-
tener expresses interest in an event supported by an event source and
registers to receive notifications of that event based on a set of parame-
ters. Figure 2.1 presents a general model of the listener-source paradigm,
where the actual filtering and notification are treated as a black box, which
can reside either on the source or on the network. Ideally, the event source
does not have knowledge of all the parties that are interested in a particu-
lar event.

The event system is a logically centralized component that may be
a single server or a number of federated servers. In a distributed sys-
tem consisting of many servers, there are two approaches for connecting
sources and listeners:

• The event service supports subscription of events, and it routes reg-
istration messages to appropriate servers (for example, using a min-
imum spanning tree). One optimization to this approach is to use ad-
vertisements, messages that indicate the intention of an event source
to offer a certain type of event, to optimize event routing.

11

CHAPTER 2. EVENT-BASED SYSTEMS

Event source

Events

Listener

I’m interested in

event of type …

Register interface

Notification

interface

fire notification

event

registrations

Filters

Figure 2.1: General model of the event source and event listener. Event
source fires events, and the listener is notified using some mechanism on
the network or in the client.

• Some other means of binding the components is used, for example,
a lookup service.

In this context, by event listener we mean an external entity that is
located on a physically different node on the network. However, events
are also a powerful method to enable inter-thread and local communica-
tion, and there may be a number of local event listeners that wait for local
events.

2.2.3 Routing

Event routing requires that store-and-forward type of event communication
is supported within the network on the access nodes (or servers). This
calls for intermediate components called event routers. Each event source
is connected to at least one router. Each router needs to know a suitable
subset of other routers in the domain.

In this approach the request, in the worst case, is introduced at every
router to get a full coverage of all message listeners. This is not scalable,
and the routing needs to be constrained by locality or by hop count. Ef-
fective strategies to limit event propagation are zones used in the ECO
architecture [HMN+00], the tree topology used in JEDI, or the four server
configurations addressed in the Siena architecture. Siena broadcasts ad-
vertisements throughout the event system, subscriptions are routed us-
ing the reverse-path of advertisements, and notifications are routed on
the reverse-path of subscriptions. IP Multicast is also a frequently used
network-level technology for disseminating information and works well in

12

2.2. EVENT MODELS

closed networks, however, in large public networks multicast or broadcast
may not be practical. In these environments universally adopted stan-
dards such as TCP/IP and HTTP may be better choices for all communi-
cation [IBM02a].

2.2.4 Content-based Routing

Events are published in a named channel, or in an infrastructure of one or
more routers that can use the content of the events in making the forward-
ing decision. Named channels are also called topics, and they represent
an abstraction of numeric network addressing mechanisms. With content-
based addressing clients can change their interests without changing the
addressing scheme. With channel-based messaging, new channels need
to be added to the address space.

Content-based The routing decision is made based on the content, for
example strongly typed fields in the event message.

Subject-based The routing decision is made based on the subject of the
event.

Channel-based (or topic-based) The routing decision is made based on
the channel on which the event is published. A channel is a discrete
communication line with a name.

The producers and consumers must agree on a channel. Content-
based and subject-based are more flexible than channel-based messag-
ing, because this agreement is not necessary. Channel-based messaging,
however, allows the use of IP multicast groups. The subjects can be allo-
cated to multicast addresses. Channel-based routing can be emulated
with content-based systems by limiting to a universally defined subject
field.

Content-based event routing has been proposed as one of the require-
ments for advanced applications, in particular for mobile users [CW01].
Content-based routing takes place above the network level (level 3) and
can be based on e.g. IP multicast networks. In the content information
model, the users subscribe to information based on their preferences. The
information, when it is available, is then delivered based on these prefer-
ences. The subscription paradigm abstracts the publishers of information
from the receivers: information is not published to a set of addresses.

Work has been done in using multicast networks to deliver the informa-
tion to the subscribers [CW01] using multicast addresses. The granularity

13

CHAPTER 2. EVENT-BASED SYSTEMS

and flexibility of this approach depends on the size and number of the vir-
tual multicast addresses. As an alternative Carzaniga and Wolf present
an application-level information broker with a rich information selection ca-
pability. They define a content-based addressing scheme by consider-
ing the predicates that define subscriptions as the destination addresses.
Datagrams are implicitly addressed to a node by their content. The predi-
cate model is a set of boolean functions imposed on the datagram model.
Content-based routing is done using an algorithm that uses a forwarding
table, which is a map of interfaces to their receiver predicates.

Content-based systems are contrasted with channel-based and sub-
ject-based systems, because the selection is done based on the whole
content. The other strategies offer only a set of well-defined attributes for
selection purposes.

Filtering

Filtering reduces the number of events sent from the sources to the lis-
teners by matching events against a template. Those events that match
the template are forwarded to the listeners. Matching is usually done on
single events, but may be also performed on compound events. Filtering
improves the scalability of the system. Also, the location of the filtering of
events affects the scalability of the framework. Here we face two separate
issues: the filtering of simple events and the filtering of compound events.
Both kinds of event filtering can be done at several locations:

• At a centralized server (client-server)

• At the listener

• At the event source

• In the infrastructure (event routers)

Source-side filtering is more scalable than a centralized server or filter-
ing at the listener. Schemes that use multicasting and listener-side filtering
place the burden on listeners and the communication infrastructure.

Quality of Service

Applications based on event-style communication have varying reliability
requirements. The event system may support semantics ranging from "at-
most-once" to "exactly-once". In addition, there may be availability, per-
formance, scalability, and throughput requirements. The diverse nature of

14

2.2. EVENT MODELS

requirements calls for a number of implementations optimized for different
sets of requirements.

Taxonomy

Event models can be grouped into a taxonomy by their properties. As con-
trasted with the client-server paradigm, event models involve one-to-many
communication. Other important aspects for event model classification
are [Mei00]:

• Does the model support distributed operation, local operation, or
both? In a centralized event model the event sources and listen-
ers are located on the same host, whereas in the distributed model
they can be located on different hosts.

• Support for detecting composite events (compound events). Com-
pound events require more complicated filtering and history mecha-
nisms.

• Support for Quality of Service requirements, for example, delivery
semantics (best-effort, at-most-once, . . .).

• Support for typed events, generic events, or both. Typed events have
a well-defined structure, for example a set of ordered strings, and
generic events do not have an expressive structure (datatype any).

• How decoupled the event listeners are from the event sources?

• Is the model subscription-based or advertisement-based?

• Support for channel-based, subject-based, or content-based routing.

Additional aspects are:

• Support for wireless systems and disconnected operation.

• Does the model support event routing, direct notification, etc.?

• How are interests defined and discovered? Not all models include
discovery functionality.

Figure 2.2 and Figure 2.3 present an example taxonomy based on the
event architectures explored in section 2.4.

15

CHAPTER 2. EVENT-BASED SYSTEMS

Model

Centralized (local) Architectural definition Distributed Ad hoc

Adapter W3C DOM

Java Delegation Model

Rapide STEAM

Figure 2.2: Example event model taxonomy.

2.2.5 Requirements for Mobile Computing

The mobile environment poses several challenges for detecting and dis-
tributing events:

• The network connections are intermittent.

• Bandwidth may vary greatly depending on the connection. This ef-
fectively puts constraints on the number of events that can be sent
during a certain time interval, how timely the events are, and how
reliably they can be communicated to the other party.

• The devices may have limited system resources (CPU, memory, stor-
age) and may not have capability to pre-process events but send
them as they occur. This motivates an event service located on
the fixed network that provides high-level event support for mobile
clients.

• The mobile clients may move to a different geographic location or
roam in a different network. It is preferable that the event service
works after a change in connectivity or service domain.

• The user may wish to share a set of subscriptions between different
devices.

We need to consider the following requirements:

• Timely delivery of events, timely being defined in a suitable, applica-
tion-specific context.

16

2.2. EVENT MODELS

D
is

tr
ib

ut
ed

O
bs

er
ve

r/
Pu

bl
is

h−
R

eg
is

te
r−

N
ot

if
y

C
en

tr
al

iz
ed

N
ot

if
ie

r

Fi
lte

rs

A
da

pt
er

, l
ea

si
ng

W
S

E
ve

nt
in

g

C
om

po
si

te
,p

us
h/

pu
ll

Ja
va

 D
is

tr
ib

ut
ed

 M
od

el

C
E

A

So
ur

ce
/s

in
k

fi
lte

rs
C

O
M

+

Pu
sh

Pu
sh

/P
ul

l

St
at

el
es

s
fl

ow
 g

ra
ph

s

Su
bs

cr
ip

tio
n

se
m

an
tic

s

St
at

e−
ba

se
d

ob
je

ct
s/

M
ob

ili
ty

Fi
lte

rs
,T

op
ic

s,
Q

oS
,D

ur
ab

ili
ty

JM
S

N
o

fi
lte

rs
,n

o
Q

oS

Fi
lte

rs
,Q

oS

C
O

R
B

A
 E

S

C
O

R
B

A
 N

S

G
ry

ph
on

A
dv

er
tis

em
en

t s
em

an
tic

s

N
o

fi
lte

rs
,r

en
de

zv
ou

s

C
en

tr
al

iz
ed

 p
ro

xy
/b

uf
fe

ri
ng

M
ob

ili
ty

Je
di

Si
en

a

R
eb

ec
a

Sc
ri

be

E
lv

in

JE
ch

o

Figure 2.3: Distributed event systems in the taxonomy.

17

CHAPTER 2. EVENT-BASED SYSTEMS

• Reliable delivery of events. Events must be delivered as they are
published. Events may not become lost.

• Events need to be processed asynchronously.

• Events need to be monitored and notified across domains.

• Event ordering must be preserved: if events are used for synchroniz-
ing applications either a causal or a total order is required.

In order to support reliable and fault-tolerant event notification, the
event sources need to provide reliable persistent storage and buffer events.
This is more realizable with fixed network servers, because the mobile
clients do not necessarily have persistent storage.

From the device point of view:

• Transmission cost depends on the number of bytes transmitted and
the battery life (transmission requires energy).

• How much event history is stored within the device? A distributed
event service should be used only for external purposes, not for in-
ternal monitoring.

• How to deliver notifications to the device in different networks and
protocols? For instance, the bearer may not support push-type com-
munication.

A mediator [BMH+00] (a proxy) can prevent the disconnected mobile
user from missing events. In this case, the mediator registers events on
behalf of the mobile client and buffers the event notifications. The size of
the accumulated set of events may be fairly large. Therefore, the client
needs some way to prune the event history and decide what events are
crucial for delivery. On the other hand, the client can decide what events
are registered, and may deregister unimportant events when the band-
width is low or costly.

The events may also have a limited temporal existence according to
user, system, or application requirements. Time-to-live (TTL) timers and
hop counters can be used to remove obsolete events.

From the security point of view we have to take into account

• Encrypting subscriptions and notifications.

• Securing communications between various communicating entities.

• Access control and authentication.

18

2.3. EVENT STANDARDS AND SPECIFICATIONS

2.3 Event Standards and Specifications

This section presents event standards and specifications. We start from
the standard centralized event model in Java, and continue with the Dis-
tributed Event Model in Java. We present the Java Message Service in
subsection 2.3.3, subsection 2.3.4 presents the CORBA Event Service
and subsection 2.3.5 the Notification Service. In subsection 2.3.6 we ex-
amine the CORBA Management of Event Domains. We also examine
W3C DOM events, Web Services events, COM+ and .NET, and the Web-
Sphere MQ architecture.

2.3.1 Java Delegation Event Model

The Java Delegation Event Model was introduced in the Java 1.1 Abstract
Windowing Toolkit (AWT) and serves as the standard event processing
method in Java. The model is also used in the Java Beans architecture
and supported in the PersonalJava and EmbeddedJava environments.

In essence, the model is centralized and a listener can register with an
event source to receive events. An event source is typically a GUI element
and fires events of certain types, which are propagated to the listeners.
Event delivery is synchronous, so the event source actually executes code
in the listener’s event handler. No guarantees are made on the delivery
order of the events [Mei00].

The event source and event listener are not anonymous, however, the
model provides an abstraction called an adapter, which acts as a media-
tor between these two actors. The adapter decouples the source from the
listener and supports the definition of additional behavior in event process-
ing. The adapter may implement filters, queuing, and QoS controlling.

2.3.2 Java Distributed Event Model

The Distributed Event Model of Java is based on Java Remote Method In-
vocation (RMI) that enables the invocation of methods in remote objects.
This model is used in Sun’s Jini architecture. The architecture of the Dis-
tributed Event Model is similar to the architecture of the Delegation Model
with some differences.

The model is based on the Remote Event Listener, which is an event
consumer that registers to receive certain types of events in other objects.
The specification provides an example of an interest registration interface,
but does not specify such. The Remote Event is the event object that is

19

CHAPTER 2. EVENT-BASED SYSTEMS

returned from an event source (generator) to a remote listener. Remote
events contain information about the occurred event, a reference to the
event generator, a handback object that was supplied by the listener, and
a unique sequence number to distinguish the event globally. The model
supports temporal event registrations with the notion of a lease (Distributed
Leasing Specification). The event generators inform the listeners by calling
the listeners’ notify method. The specification supports Distributed Event
Adaptors that may be used to implement various QoS policies and filtering.

The handback object is the only attribute of the Remote Event that may
grow to unbounded size. It is a serialized object that the caller provides
to the event source; the programmer may set the field to null. Since the
handback object carries both state and behavior it can be used in many
ways, for example to implement an event filter at a more powerful host than
the event source. A mediator component can register to receive events
and give a filter object to the source. Upon event notification, the filter is
handed back and the mediator can use it to filter the event before handing
it to the original event listener.

The specification supports recovery from listener failures by the no-
tion of leasing. A lease imposes a timeout for event registrations. This is
used to ease the implementation of distributed garbage collection. Since
this model relies on RMI, it is synchronous. Each notification contains a
sequence number that is guaranteed to be strictly increasing.

2.3.3 Java Message Service

Java Message Service (JMS) [Sun01] defines a generic and standard API
for the implementation of message-oriented middleware. The JMS API is
an integral part of the Java Enterprise Edition (J2EE) version 1.3. The
J2EE supports the message-driven bean, a new kind of bean that en-
ables the consumption of messages. However, JMS is an interface and
the specification does not provide any concrete implementation of a mes-
saging engine. The fact that JMS does not define the messaging engine
or the message transport gives rise to many possible implementations and
ways to configure JMS. JMS supports a point-to-point (queues) model and
a publisher/subscriber (topics) model. In the point-to-point model only one
receiver is selected to receive a message, and in the publisher/subscriber
model many can receive the same message.

The JMS API can ensure that a message is delivered only once. At
lower levels of reliability an application may miss messages or receive du-
plicate messages. A standalone JMS provider (implementation) has to

20

2.3. EVENT STANDARDS AND SPECIFICATIONS

support either point-to-point or the publish/subscribe approach, or both.
Normally, JMS queues and topics are maintained and created by the ad-
ministration rather than application programs. Therefore the destinations
are seen as long-lasting. The JMS API also allows the creation of tempo-
rary destinations that last only for the duration of the connection.

The point-to-point communication model consists of receivers, senders,
and message queues. Each message queue is addressed to a particular
queue, and receivers extract messages from the queues. Each message
has only one consumer and the client acknowledges the successful deliv-
ery of a message to the component that manages the queue. In this model
there are no timing dependencies between a sender and a receiver; it is
enough that the queue exists.

In addition, the JMS API allows the grouping of outgoing messages
and incoming messages and their acknowledgements to transactions. If a
transaction fails, it can be rolled back.

In the publish/subscribe model the clients address messages to a topic.
Publishers and subscribers are anonymous, and messaging is usually
one-to-many. This model has a timing dependency between consumers
and producers. Consumers receive messages after their subscription has
been processed. Moreover, the consumer must be active in order to re-
ceive messages. The JMS API provides an improvement on this timing
dependency by allowing clients to create durable subscriptions. Durable
subscriptions introduce the buffering capability of the point-to-point model
to the publish/subscribe model. Durable subscriptions can accept mes-
sages sent to clients that are not active at the time. A durable subscription
can have only one active subscriber at a time.

Messages are delivered to clients either synchronously or asynchro-
nously. Synchronous messages are delivered using the receive method,
which blocks until a message arrives or a timeout occurs. In order to
receive asynchronous messages, the client creates a message listener,
which is similar to an event listener. When a message arrives the JMS
provider calls the listener’s onMessage method to deliver the message.

JMS clients use JNDI (Java Naming and Directory Service) to look up
configured JMS objects. JMS administrators configure these components
using facilities specific to a provider. There are two types of administered
objects in JMS: ConnectionFactories, which are used by clients to connect
with a provider, and Destinations, which are used by clients to specify the
destination of messages.

JMS messages consist of a header with a set of header fields, proper-
ties that are optional header fields (application-specific, standard proper-
ties, provider-specific properties), and a body that can be of several types.

21

CHAPTER 2. EVENT-BASED SYSTEMS

Message selection is supported by filtering the message header against
the given criteria using an SQL grammar. A JMS message selector al-
lows clients to define the messages they are interested in. Headers and
properties need to match the client specification in order to be delivered
to that client. Message selectors cannot reference values embedded in
the message body. An example is “JMSType=’stock’ AND company=’abc’
AND stockvalue > 100”.

JMS supports five different messages types: Map, Object, Stream,
Text, and Bytes. MapMessage is a set of name/value pairs, where names
are strings and values are primitive Java types. ObjectMessage is a mes-
sage containing a serializable Java object. StreamMessage is a stream
of sequential Java primitive values. TextMessage represents an instance
using the java.lang.String class and can be used to send and receive XML
messages. BytesMessage is a stream of bytes.

Typically a JMS client creates a Connection, one or more Sessions,
and a number of MessageConsumers and MessageProducers. Connec-
tions are created in the stopped mode. After a connection is started (start()
method) messages start arriving to the consumers associated with that
connection. A MessageProducer can send messages while a Connec-
tion is stopped. A Session is a single-threaded context for consuming and
producing messages. Sessions act as factories for creating MessagePro-
ducers, MessageConsumers, and temporary destinations. JMS defines
that messages sent by a session to a destination must be received in the
order in which they were sent.

Messages are acknowledged automatically in the transactional mode
(supported by the Java Transaction API), however, if a session is not trans-
acted there are three possible options for acknowledgement: lazy acknowl-
edgment that tolerates duplicate messages, automatic acknowledgement,
and client-side acknowledgement. In persistent mode delivery is once-
and-only-once, and in non-persistent mode the semantics are at-most-
once.

JMS messaging proceeds in the following fashion:

1. Client obtains a Connection from a ConnectionFactory

2. Client uses the Connection to create a Session object

3. The Session is used to create MessageProducer and MessageCon-
sumer objects, which are based on Destinations.

4. MessageProducers are used to produce messages that are deliv-
ered to destinations.

22

2.3. EVENT STANDARDS AND SPECIFICATIONS

5. MessageConsumers are used to either poll or asynchronously con-
sume (using MessageListeners) messages from producers.

The JMS API (1.0.2b) does not address load balancing, fault tolerance,
error notification, administration, or security. JMS implementations are
available from many vendors, such as IBM (MQSeries), Sun Microsys-
tems (J2EE), The ExoLab Group (OpenJMS), SoftWired (iBus//Mobile),
and Oracle (8i and later).

The latest JMS version is 1.1, which incorporates changes approved by
a Java Community Process program Maintenance Review that closed on
March 18, 2002. In JMS 1.0.2 client code must use the queue and topic
interfaces, and it is impossible to reuse queue clients with topics. JMS
1.1 supports client code that works simultaneously with either the point-to-
point or publish/subscribe domains. Queues and topics can be accessed
through the same session and thus in the same transaction.

JMS and CORBA Interoperability

The communication models of JMS and CORBA are similar, however, inte-
gration is necessary in the areas of message conversion, filtering, and the
incorporation of point-to-point mode, which uses queues (CORBA uses
publish-subscribe). The Notification Service supports structured events
defined in IDL, and JMS supports the five different message formats.

OMG is working on a Notification Service / JMS Interworking docu-
ment [OMG02]. The Request For Proposals (RFP) dealt with mappings
between message types, reconciliation between different QoS properties,
the ability to maintain transactional message contexts across the services,
and implementations which facilitate end-to-end messaging between the
services. The submission document has been replaced with an OMG Final
Adopted Specification, which is currently in the finalization phase.

The specification defines a bridge that manages and interconnects an
event channel with a JMS destination. The principles behind the Bridge
IDL definitions were to provide backward compatibility with the program-
ming models of NS and JMS. The Bridge is a stateful entity that mediates
messages between the two systems. Structured events are used to im-
prove performance. The Bridge is also used to automate the connection
setups between channels and destinations. A BridgeFactory object sup-
plies Bridge objects depending on the parameters: channel, destination,
type of communication (push/pull), and message type (sequence, single).
Since JMS does not support pull at the source side, this is not supported.

23

CHAPTER 2. EVENT-BASED SYSTEMS

In the implementation of PrismTech’s OpenFusion [Pri01], the JMS
event producer is extended by a client-side library that transforms JMS
messages to CORBA Notification Service structure events. JMS con-
sumers may use push and pull, but the consumers of the Notification Ser-
vice may only use one of these two approaches.

JMS only allows clients to specify filters on the message properties.
To keep the information filterable, this data needs to be included in the
filterable body of a structured event. The JMS message interface supports
three attributes that are also supported in the Notification Service:

1. DeliveryMode (persistent, non-persistent which maps to best effort
in CORBA NS)

2. Expiration (expiration in milliseconds, set to QoS in the variable Time-
out)

3. Priority (Mapped to notification Priority QoS in the variable header)

Other user-defined name-value pairs are converted to IDL using the stan-
dard primitive mapping.

Since Notification Service uses the Extended Trader Constraint Lan-
guage and JMS uses the where clause of SQL92, the Notification Service
needs to be extended to support SQL92.

JMS

producer

Publish Subscribe

Proxy

consum.

Proxy

consum.

Proxy

supplier

Master

queue

Consu-

mer

JMS

adapter
JMS

subsc.

JMS

adapter

Supplier

Delivery

Queue

Delivery

Queue

Figure 2.4: The OpenFusion Notification Service with JMS publish-sub-
scribe interoperability.

Wireless JMS

The iBus//Mobile software from SoftWired consists of a server-side gate-
way for mobile clients and a JMS compatible messaging server (iBus//-
MessageServer). The gateway enables communication between a wide
variety of devices running different operating systems, such as PalmOS,

24

http://www.softwired-inc.com/products/mobile/mobile.html

2.3. EVENT STANDARDS AND SPECIFICATIONS

Point-to-point

Proxy

consum.

Proxy

consum.

Master queue
JMS

adapter

JMS

subsc.

Supplier

JMS

adapter

Delivery

Queue

JMS

producer

Figure 2.5: The OpenFusion Notification Service with JMS point-to-point
interoperability [Pri01]

Symbian, and PocketPC. The gateway supports communication over SMS,
WAP, TCP, UDP, and GPRS. The system supports corresponding Java vir-
tual machines, J2ME (CLDC and CDC), PersonalJava, and J2SE [R+01a].

All communication between the clients and the gateway is transmitted
in binary form. From the JMS provider’s viewpoint the gateway is a regular
JMS client and from the client’s viewpoint the gateway is a communica-
tion hub and a wrapper for different transport and representation formats.
In the case of SMS the gateway accepts the incoming messages and a
component within the service domain can respond with SMS.

The client side library takes a minimum of 70k and at runtime the
CLDC version takes a minimum of 50k of Java heap (as a comparison,
a 8MB Palm has a 150k Java heap). The iBus system supports secu-
rity in the form of access control, certificates, and symmetric/asymmetric
keys. Cryptographic functions are supported through third-party libraries.
If the bearer does not support push-type connections, one connection is
used for sending client data to the server and another connection is used
for communication from the gateway to the client. Each HTTP request
goes over the first connection: send data to the servlet, and return. The
second connection is open and blocks until there is traffic; after receiving
messages the connection is immediately re-established. The underlying
library hides the differences between the protocols.

2.3.4 CORBA Event Service

The CORBA Event Service specification (current version 1.1) defines a
communication model that allows an object to accept registrations and
send events to a number of receiver objects [Sie99]. The Event Service
supplements the standard CORBA client-server communication model and
is part of the CORBAServices that provide system level services for object-

25

CHAPTER 2. EVENT-BASED SYSTEMS

based systems. In the client-server model illustrated in Figure 2.6, the
client makes a synchronous IDL operation on a specified object at the
server. The event communication is unidirectional (using CORBA one-way
operations) [OMG01a].

Client Object

Implementation

IDL stub IDL

Skeleton

Object Request Broker (ORB)

I. REQUEST

II. Invocation returns

Figure 2.6: The standard CORBA client-server model of invoking opera-
tions from client to the target object.

The Event Service extends the basic call model by providing support
for a communication model where client applications can send messages
to arbitrary objects in other applications. The Event Service addresses the
limitations of synchronous and asynchronous invocation in CORBA.

The specification defines the concept of events in CORBA: an event is
created by the event supplier and is transferred to all relevant event con-
sumers. The set of suppliers is decoupled from the set of consumers, and
the supplier has no knowledge of the number or identity of the consumers.
The consumers have no knowledge of which supplier generated the event.

The Event Service defines a new element, the event channel, which
asynchronously transfers events between suppliers and consumers. Sup-
pliers and consumers connect to the event channel using the interfaces
supported by the channel. An event is a successful completion of a se-
quence of operation calls made on consumers, suppliers, and the event

26

2.3. EVENT STANDARDS AND SPECIFICATIONS

channel.
The event channel performs the following functions:

• It allows consumers to register interest in events and stores the reg-
istration information.

• It accepts events generated by suppliers.

• It forwards events from suppliers to registered consumers.

The Event Service is defined to operate above the ORB architecture:
the suppliers, the consumers, and the event channel may be implemented
as ORB applications and events are defined using standard IDL invoca-
tions.

Push and Pull

The CORBA Event Service provides two models for initiating the transfer
of events between suppliers and consumers. The first model is the push
model, in which suppliers send events to consumers (Figure 2.7). In this
case the suppliers are active and the consumers passive. Moreover, the
event channel actively delivers events to the consumers. In the second
model, the pull model (Figure 2.8), the consumers request events from the
suppliers. A supplier actively waits for pull requests to arrive. Upon the
arrival of a pull request, the requested event is generated and sent to the
pulling consumer. CORBA supports both blocking and non-blocking pull.

Event Channel (EC)

Consum.

Consum.

Supplier

Event supplier invokes

operation on EC to

supply a new event

EC invokes an

operation on each

consumer to consume

the new event.

Figure 2.7: Example of an event propagation implementation.

27

CHAPTER 2. EVENT-BASED SYSTEMS

Event Channel (EC)

Consum.

Consum.

Supplier

Supplier

I. Consumer initiated pull by

invoking an object in EC.

II. EC makes a similar

invocation on an object in each

supplier.

Figure 2.8: Pull Model and the Event Channel.

The Hybrid Model

It is also possible to mix the push and pull models in one application,
because the event channel decouples the consumers and suppliers from
each other. It is possible to connect suppliers using the push model and
consumers using the pull model. In the hybrid model, the event channel
does not take an active role in delivering the event to the consumers.

Event Channel (EC)

Consum.

Consum.

II. Consumer pulls the event

by invoking an operation.

I. A supplier puts the event on

the channel by invoking an

operation.

Supplier

Supplier

Figure 2.9: The hybrid model mixing Push and Pull models.

Connecting Suppliers and Consumers

The Event Service specification does not include a mechanism for locating
or discovering consumers or suppliers, however, it provides the adminis-
trative operations for connecting the suppliers and consumers. Each new
event consumer added to the event channel returns a proxy supplier. The
proxy supplier follows the supplier interface and has a method for connect-
ing a consumer to the proxy supplier. Each new event supplier added to

28

2.3. EVENT STANDARDS AND SPECIFICATIONS

the event channel returns a proxy consumer. The proxy consumer has a
method for connecting to the proxy supplier.

A supplier is registered by taking a proxy consumer from the event
channel and connecting it with the supplier. Similarly, an event-receiving
application takes a proxy supplier from the event channel and connects to
it by providing a consumer. Each admin object is a factory that creates
the proxy interface that is used in connecting the clients and the event
sources. Consumer admins create proxy suppliers and supplier admins
create proxy consumers.

Typed and Untyped Event Communication

The data of an event can be passed as invocation parameters or return
values. Events are not objects, because the CORBA object model does
not support passing objects by value (CORBA 2.3 supports valuetypes).
Event data is application-specific and can be either untyped or typed.

In untyped communication the event is propagated by invoking a series
of generic push and pull operations. The push operation takes a single
parameter of type any, which allows any IDL defined datatype to be prop-
agated, and stores the event data. The pull operation has no parameters
and transfers event data in its return value, which is of type any. In untyped
communication both the supplier and the consumer applications need to
agree on the data format of the event.

In typed event communication events are propagated through an appli-
cation-specific interface created by the programmer in IDL. The program-
mer defines the interface for event propagation that is used by consumers
and suppliers. Parameters can be of any suitable datatype supported by
the IDL language.

To setup typed push-style communication, the consumers and suppli-
ers exchange object references (TypedPushConsumer and PushSupplier).
The supplier invokes a method to get a reference that supports the typed
consumer interface. The particular reference is associated with the Typed-
PushConsumer interface and needs to be agreed on by both the consumer
and the supplier. The supplier uses this reference to invoke operations on
the consumer.

In the typed pull model consumers request event information using
some mutually agreed interface. The parties exchange the PullConsumer
and TypedPullSupplier interfaces, and an object reference supporting the
typed interface is obtained. Once the reference is obtained, the consumer
can invoke operations on the supplier.

29

CHAPTER 2. EVENT-BASED SYSTEMS

Discussion

The CORBA Event Service supports different implementations of the Event
Channel, and this allows a wide range of approaches for implementing
Quality of Service and delivery issues.

The CORBA Event Service addresses some of the problems of the
standard CORBA synchronous method invocations by decoupling the in-
terfaces and providing a mediator for asynchronous communication be-
tween consumers and suppliers. The supplier does not have to wait for the
event to be delivered to the consumer. Moreover, the event channel hides
the number and identity of the consumers from suppliers using the proxy
objects (transparent group communication). The supplier sends events to
its proxy consumer, and the consumer receives events from its proxy sup-
plier. The event consumer and supplier interfaces support disconnection.

The specification does not address several important issues, such as
Quality of Service support. Applications may have requirements for event
notification in terms of reliability, ordering, priority, and timeliness. Further-
more, the specification does not provide a system for event filtering. Event
filtering needs to be implemented using a proprietary system within the
event channel by adding a mechanism for selective event delivery. Event
channels can be composed, because they use the same consumer/sup-
plier interfaces. An event channel can push an event to another event
channel. Typed event channels can be used to filter events based on event
type [Bar01, OMG01a].

In addition, the specification does not address compound events, but
suggests that complex events may be handled by creating a notification
tree and checking event predicates at each node of the tree. The drawback
of the tree is that the number of hops needed to deliver an event increases.

The use of proprietary event service implementations restricts the in-
teroperability of applications. Applications that use one proprietary event
service implementation may not interoperate with another application that
is based on a different event service implementation.

2.3.5 CORBA Notification Service

The CORBA Notification Service (current version 1.0.1) [OMG01c] ex-
tends the functionality and interfaces of the Event Service to support better
interoperability [Bar01]. One of the most significant additions to the Noti-
fication Service is event filtering. Filters allow consumers to receive par-
ticular events that match certain constraint expressions. Filtering reduces

30

2.3. EVENT STANDARDS AND SPECIFICATIONS

the number of events sent to the consumers and improves the scalability
of the event handling system.

Figure 2.10 presents the components of the CORBA Notification Ser-
vice, which derive from the Event Service discussed in the previous sec-
tion. The event channel has been extended to support a number of admin
objects. The Notification Service allows the definition of filters at the prox-
ies. Moreover, each admin object is seen as the manager of the set of
proxies it has created. Admin objects may be associated with QoS prop-
erties and filter objects. The QoS properties and filter objects of the admin
object are transferred to each proxy it creates, however, the QoS proper-
ties may be changed on a per-proxy basis.

Push supplier Pull supplier

Push consumer Pull supplier

Proxy Push Consumer Proxy Push Consumer

Event Channel

Proxy Push Supplier Proxy Pull Supplier

consumer

filter

consumer

filter

admin filter admin filter

supplier

filter
supplier

filter

Consumer admin Supplier admin

Figure 2.10: Components in the CORBA Notification Service [GCSO01].

Filters

Filters are CORBA objects that support the addition, modification, and re-
moval of constraints. Constraints are used to match event message values
and refer to variables that are part of the event notification message. Con-
straints are either event types or written in a constraint language. Variable
names can refer to all parts of the current notification. The current notifi-
cation is expressed with the dollar sign ’$’.

A sample notification constraint:

31

CHAPTER 2. EVENT-BASED SYSTEMS

$.type_name == StockAlert
$.market_name == ’NASDAQ’
$.ticker == ’Company’
$.price > ’100’ or $.price < 80

The default constraint grammar is Extended TCL (Trader Constraint
Language specified by the Trading Service). The Event Notification speci-
fication adds the notion of mapping filter objects. Each proxy supplier may
have an association with a mapping filter object, which affects the priority
and the lifetime property of the events it receives.

Quality of Service (QoS)

The Notification Service defines standard interfaces that allow the control
of characteristics over the delivery of the notification. Service characteris-
tics at different levels in the protocol stack are represented using name/-
value pairs. QoS properties, tuples of the form <String, Any>, can be used
with an event channel, admin objects, proxy suppliers, proxy consumers,
and message instances.

Characteristics include:

• Discard policy that determines which notifications are discarded when
resource limits apply (queues are full).

• Earliest delivery time.

• Expiration time, which indicates the time range when the event is
valid.

• Maximum number of notifications that can be queued for a single
consumer. This effectively places an upper bound that lessens the
load presented by misbehaving consumers.

• Order policy, which specifies the order in which notifications are buff-
ered for delivery.

• Priority of events.

• Reliability of event delivery

• Both event reliability and connection reliability. If fault tolerance prop-
erties are specified, the Notification Service reconnects to the set of
clients and delivers all non-expired events to consumers after a crash
or disconnection. At the message level: Best effort, persistent.

32

2.3. EVENT STANDARDS AND SPECIFICATIONS

Furthermore, the event channel supports the following QoS properties:

• MaxQueueLength, which specifies the maximum number of events
that can be queued.

• MaxConsumers, which specifies the maximum number of consumers
that can be connected to the channel.

• MaxSuppliers, which specifies the maximum number of suppliers
that can be connected to the channel.

Structured Events

The Notification Service defines a standard data structure for the events.
The structured event illustrated in Figure 2.11 is a strongly typed event
message that consists of a header and a body. The header contains two
sections:

• the first stores fixed information, such as domain_name, event_-
name, and type_name.

• The second section stores the variables and optional information
about the event. This is a sequence of properties to hold QoS in-
formation related to the notification.

The body of the structured event stores the actual event data and is
also divided into two sections:

• The filterable data, which is a sequence of properties. This part con-
tains the fields that the consumers use to base filtering decisions on.

• The payload data.

The header and body are structured into two parts mainly because of
performance reasons. When filterable data has its separate compartment,
it is not necessary to touch the payload data upon filtering. Moreover, the
notification could be contained within the optional header fields leaving the
body empty. This would be even more streamlined.

Discussion

The centralized nature of the Event Channel as a CORBA object limits
its scalability. All the registered consumers and suppliers are managed
by the channel, which may limit the number of active entities and also

33

CHAPTER 2. EVENT-BASED SYSTEMS

remainder_of_body

Filterable name_n Filterable value_n

Filterable name_1 Filterable value_1

domain_type

type_name

event_name

Optional header

field name_1

Optional header

field value_1

field name_m field value_m

Event Header

Event Body

Figure 2.11: The structured event: Event header and event body.

34

2.3. EVENT STANDARDS AND SPECIFICATIONS

the maximum number of notifications that the event channel is capable of
processing in a given timeframe. Therefore it becomes important to create,
manage, and specify federations of event channels. Each event channel
has a master queue and a number of consumer queues. Each queue
has some maximum capacity, which may be enforced using QoS policies
supported by the specification. One way to relieve the bottleneck of the
centralized event channel is to distribute these queues as CORBA objects,
however, this kind of solution is still centralized. Since NS supports the
federation of channels by connecting the supplier and consumer proxies,
the system supports scalability.

Channel federation can be used to

• Improve performance by distributing consumers onto several event
channels. Since an event channel is a CORBA object, it may be-
come a bottleneck if the number of consumers (or producers) be-
comes large. Event channels may also be used to enhance local
delivery by assigning to each event channel only local subscribers.
In this case there is only one network invocation and a number of
local invocations.

• Improve reliability by having multiple event channels for the same
information. If one event channel fails, it does not necessarily prevent
consumers from receiving the notifications.

• Improve flexibility by grouping consumers and producers into logical
units (event channels).

2.3.6 CORBA Management of Event Domains

CORBA Event Service and Notification Service do not specify an event
discovery service or a mechanism to federate event channels. More-
over, the procedure for connecting event channels is complex. The OMG
Telecommunications Domain Task Force addresses these issues in the
CORBA Management of Event Domains Specification [OMG01c], which
specifies an architecture and interfaces for managing event domains. An
event domain is a set of one or more event channels grouped together for
management, and for improved scalability. The specification defines two
generic domain interfaces for managing generic typed and untyped chan-
nels. Moreover, a specialized domain for both channels and logs is defined
by the OMG Telecom Log Service specification.

The specification addresses [OMG01c]

35

CHAPTER 2. EVENT-BASED SYSTEMS

Event service I

Proxy

consumer

Proxy

consumer

Event

channel

Event service II

Consumer

Event

channel

Consumer

Consumer

Supplier

Supplier

Proxy

supplier

Proxy

supplier

Proxy

consumer

Proxy

supplier

Proxy

supplier

Figure 2.12: CORBA Notification Service channel federation.

• connection management of clients to the domain,

• topology management,

• sharing the subscription and advertisement information in an event
domain, even when connections between event channels change at
runtime,

• event forwarding within a channel topology, and

• connections between event channels.

It supports the creation of channel topologies of arbitrary complexity,
allowing cycles and diamond shapes in the graph of interconnected chan-
nels. However, if events may reach a point in the graph by more than one
route duplicate events need to be detected and removed. Moreover, if no
timeouts are specified, events in a cycle will propagate infinitely. There-
fore, the specification defines mechanisms that are used to detect cycles
or diamonds in the network topology. Graph topology enforcement is done
at channel connection time, and illegal connections are refused by the do-
main management.

Event suppliers inform the proxy consumers of event type changes us-
ing the offer_change callback. The channel is responsible for sharing this
information with the consumers by executing offer_change on them. The
consumer may be another channel and thus the change may propagate
throughout the channel topology. Subscription changes work similarly, and

36

2.3. EVENT STANDARDS AND SPECIFICATIONS

the channel is responsible for invoking the subscription_change operation
on all suppliers.

Event suppliers attached to the channel can obtain the types of sub-
scriptions of event channels anywhere downstream by invoking obtain_-
subscription_types on the proxy consumers. Similarly an event consumer
can obtain the event types offered by suppliers on any event channel down-
stream by invoking obtain_offered_types on its supplier channels.

2.3.7 W3C DOM Events

W3C’s Document Object Model Level 2 Events is a platform- and lan-
guage-neutral interface that defines a generic event system [W3C00a].
The event system builds on the DOM Model Level 2 Core and on DOM
Level 2 Views. The system supports registration of event handlers, de-
scribes event flow through a tree structure, and provides contextual infor-
mation for each event. The specification provides a common subset of the
current event systems in DOM Level 0 browsers. For example, the model
is typically used by browsers to propagate and capture different document
events, such as component activation, mouse overs, and clicks. The two
propagation approaches supported are capturing and bubbling. Capturing
means that an event can be handled by one of the event’s target’s ances-
tors before being handled by the event’s target. Bubbling is the process by
which an event can be handled by one of the event’s target’s ancestors af-
ter being handled by the event’s target. The specification does not support
event filtering or distributed operation.

The specification "An Events Syntax for XML" is a W3C Recommenda-
tion (11 October 2003) and defines a module that provides XML languages
with the ability to integrate event listeners and handlers with DOM Level 2
event interfaces [W3C03g]. The specification provides an XML represen-
tation of the DOM event interfaces. The ability to process external event
handlers is not required.

2.3.8 Web Services Eventing (WS-Eventing)

The Web Services Eventing (WS-Eventing) specification describes a pro-
tocol that allows Web Services to subscribe or to accept subscriptions for
event notifications [BMT04]. An interest registration mechanism is speci-
fied using XML Schema and WSDL. The specification supports both SOAP
1.1 and SOAP 1.2 Envelopes. The key aims of the specification are to

37

CHAPTER 2. EVENT-BASED SYSTEMS

specify the means to create and delete event subscriptions, to define ex-
piration for subscriptions, and to allow them to be renewed. The specifi-
cation relies on other specifications for secure, reliable, and/or transacted
messaging. The specification supports filters by specifying an abstract
filter element that supports different filtering languages and mechanisms
through the Dialect attribute. The filter is specified in the Filter element.

2.3.9 COM+ and .NET

Standard COM and OLE support asynchronous communication and the
passing of events using callbacks, however, these approaches have their
problems. Standard COM publishers and subscribers are tightly coupled.
The subscriber knows the mechanism for connecting to the publisher (in-
terfaces exposed by the container). This approach does not work very well
beyond a single desktop. Now, the components need to be active at the
same time in order to communicate with events. Moreover, the subscriber
needs to know the exact mechanism the publisher requires. This interface
may vary from publisher to publisher making this difficult to do dynamically
(ActiveX and COM use the IconnectionPoint mechanism for creating the
callback circuit, an OLE server uses the method Advise on the IoleObject
interface). Furthermore, this classic approach does not allow filtering or
interception of events [Pla99, Sri01, Mic02].

COM+ Event Service

The COM+ event service [Pla99, Mic02] is an operating system service
that provides the general infrastructure for connecting publishers and sub-
scribers. The service is a Loosely Coupled System (LCS), because it de-
couples event producers from event subscribers using the event service
and a catalog for storing available events and subscription information. In
this architecture, an event is a method in a COM+ interface called the event
method, and it contains only input parameters.

The following steps are required to produce an event:

1. An event Class is registered.

2. Subscriber registers for an Event.

3. Publisher creates an Event Object at run time.

4. Publisher fires the Event by calling the method in the Event Object.

38

2.3. EVENT STANDARDS AND SPECIFICATIONS

2. Registers

Publisher Event

Object

Subscriber

Event Class COM+ Catalog

1. Registers

4. Fires event

3. Creates
5. Reads list of

subscribers

6. Receives

event

Figure 2.13: The COM+ Event Service.

5. Event Object reads the Subscription List from the Event Store.

6. Event Object delivers the Event to the subscriber by calling the ap-
propriate method.

The change in the COM+ Event Service is the addition of the event
service in the middle of the communication. The event service keeps track
of which subscribers want to receive the calls, and mediates the calls. The
event class is a COM+ component that contains interfaces and methods.
A subscriber needs to implement the interfaces in order to receive the
event, and a publisher calls the methods to fire events. Event classes are
stored in a COM+ catalog that is updated either by the publishers or by the
administration.

Subscribers register their wish to receive events by registering a sub-
scription with the COM+ event service. A subscription is a data structure
that contains the recipient, event class, and which interface or method
within that event class the subscriber wants to receive calls from. Sub-
scriptions are also stored in the COM+ catalog either by the subscribers
or by the administration. Persistent subscriptions survive restarting the
operating system whereas transient subscriptions will be lost on restart or
reset.

The publishers use the standard object creation functions to create an
object of the desired event class. This event object contains the event sys-
tem’s implementation of the requested interface. The publisher then calls
the event method that it wants to fire. The event system implementation

39

CHAPTER 2. EVENT-BASED SYSTEMS

of that interface searches the COM+ catalog and finds all the subscribers
who have expressed interests in that event class and method. The event
system then connects to each subscriber, using direct creation, monikers,
or queued components, and calls the specified method. Event methods
return only success or failure. Any COM+ client can become a publisher
and any COM+ component can become a subscriber.

The current event system has several limitations. The subscription
mechanism is not itself distributed and there is no support for enterprise-
wide repository. Secondly, event communication in the system is done
either by DCOM or Queued Components, which are both one-to-one com-
munication mediums. The delivery time and effort increases linearly with
the number of subscribers, which means that the system is not scalable to
firing events to many subscribers.

However, client-side disconnection is supported with queued compo-
nents. COM+ supports components that record a series of method invo-
cations (event occurrences) and are able to play them back in the recorded
order. These components can be distributed using messages. Since the
event object may be defined as queuable, a disconnected client may play
back the desired event object upon reconnection.

COM+ Events can be extended to support filtering, which needs to be
implemented either on the publisher side or on the subscriber side. If an
event is filtered by a component on the publisher side, it is never delivered
to the event service. If an event is filtered on the subscriber side the event
service will make the decision of whether to deliver the event to a particular
subscriber [Mic02].

Filtering on the publisher side is done by attaching a filter object to the
event object interfaces (which correspond to events). The filter may query
the subscription information and, for example, change the firing order for
a set of subscribers. The subscriber-side filtering is done using parameter
filtering for each subscription and method invocation. Parameter filtering
evaluates the subscription FilterCriteria property against the parameters of
the event method. The filter criteria string recognizes relational operators,
nested parenthesis, and the logical keywords AND, OR, and NOT.

Interoperability with .NET

The COM+ Event System needs to generate some metadata in order to
interoperate with the .NET world. However, an abstract definition of the
Event Interface, Event Classes, and their attributes is needed [Kis01].

40

2.3. EVENT STANDARDS AND SPECIFICATIONS

.NET

The .NET framework supports events at many levels. There is support for
programming-language-level events and interoperability with COM events.
The interoperation of Visual Basic .NET code and legacy COM compo-
nent events is done using a runtime callable wrapper (RCW). In VB.NET
listeners create event handlers, which are added to sources. The connec-
tion between events and event handlers is implemented by special objects
called delegates. The benefit of the .NET runtime is that the events from
components written in different languages, say C# and VB, are interoper-
able.

Microsoft’s messaging infrastructure is called Microsoft Message Queu-
ing (MSMQ) [Mic99b]. In this kind of architecture, applications receive and
send messages using queues. MSMQ supports disconnected operation
and is especially useful on intermittently connected Windows CE/Pock-
etPC devices. MSMQ allows application writers to asynchronously send
messages. MSMQ CE version can, for example, be used

• for messages transferred when in range (delivery tracking, quality
control),

• for messages transferred once in a while (intelligent set-top boxes,
inventory control, . . .), or

• when Producer and Consumer are not active at the same time.

MSMQ Product Architecture

MSMQ queues are either private or public. Public queues are stored in a
directory service called Message Queue Information Store. Public queues
are more expensive to use because directory access is not free. More-
over, Windows CE clients cannot host public queues. The CE MSMQ
independent client can operate independently if the server is unavailable
and store messages locally. The servers route and store messages and
support clients in the form of a client proxy server and a queue manager.
On the other hand, MSMQ supports also dependent clients that cannot
store local messages and need the server. The architecture supports three
delivery options. Fast memory-based reliable store-and-forward supports
network loss, but not reboot, and cannot guarantee exactly-once seman-
tics. Persistent guaranteed store-and-forward supports reboot, and per-
sistent transactional message queuing guarantees exactly-once in-order
delivery. Transactional guarantee at commit time is about delivery to the

41

CHAPTER 2. EVENT-BASED SYSTEMS

MSMQ

APP1 APP2

API

open send rcv close

Queue Manager

System Message queues

Figure 2.14: MSMQ Product Architecture. The Queue Manager con-
nects to other Queue Managers in order to communicate between different
hosts.

42

2.3. EVENT STANDARDS AND SPECIFICATIONS

local queue. In essence, the system supports local all-or-nothing guaran-
tee [Mic99b].

The MSMQ version for Windows CE (2.12+) supports roaming and
dynamic adapter switching. It tracks Network Interface Cards (NIC) and
restarts immediately after reconnection. The transparent storage is based
on one queue per file. The footprint of the system is around 100-150K. The
CE implementation has several limitations: clients must use direct names,
only private queues are supported, the routing is limited, transactions are
not supported (once and in-order are supported), there is no system sup-
port for encryption or ACL, and there is no remote queue access. The
system can be deployed in a client-server or client-client environment and
also for message-based IPC within a device.

The next version of MSMQ, Message Queuing 3.0, is available in Win-
dows XP and supports messaging over the Internet, a one-to-many mes-
saging model, and message queuing triggers [Mic02]. HTTP is supported
as an optional transport protocol and an XML-based SOAP extension is
introduced that defines a reliable end-to-end messaging protocol. By de-
fault MSMQ uses a proprietary TCP-based protocol. The system also sup-
ports real-time messaging multicast using the Pragmatic General Multicast
(PGM) protocol [S+01]. This protocol supports only an at-most-once qual-
ity of service and does not support transactional sending. The MSMQ 3.0
programming model is extended to allow an application to send a single
message to a list of destination queues.

Message Queuing Trigger is a service that allows an application to as-
sign functionality in a COM object to be triggered when a message arrives
in a particular queue. Each trigger is associated with a queue and ap-
plies a set of rules for every message arriving in that queue. An action is
executed when all conditions in a trigger hold [Mic02].

Message routing is done using the lowest-cost route that is available.
If a network fails, the next-lowest-cost route is used to deliver the mes-
sage. Administrators define costs for each network with the management
software (MSMQ explorer).

2.3.10 Websphere MQ

IBM’s MQSeries, currently known as Websphere MQ, is one of the most
popular MOM products for electronic business. The product supports
heterogeneous any-to-any communication between 35 different platforms.
MQ is compatible with JMS and integrates with Java Beans 2.0 (EJB),
XML, and JSP framework and servlets. MQ also supports SOAP for Web

43

CHAPTER 2. EVENT-BASED SYSTEMS

service creation. A JMS 1.0.2 compliant embedded JMS provider supports
point-to-point and publish-subscribe messaging [IBM02b].

MQSeries Everyplace enables access to enterprise data and supports
mobile workers. Everyplace is available for a number of platforms, for in-
stance Linux, WinCE, EPOC, and PalmOS. The PDA type messaging is
similar to messaging for other platforms with queue managers. A queue
manager manages queues that store messages, and applications com-
municate with their local queue manager. Remote queues are owned by
remote queue managers, and each message that is inserted into a remote
queue gets transmitted over the network. The queue manager may sup-
port a local queue, in which case the client is capable of supporting asyn-
chronous communication. If no local queue is present, the client is bound
to synchronous communication. Another configuration option is whether
the client supports bridges and is capable of exchanging messages with
other MQSeries queue managers.

A typical client-server configuration is a scenario where a server hosts
the queue manager and clients connect to it with a bi-directional communi-
cation link (with a proprietary MQSeries protocol). The client infrastructure
is quite lightweight, because it is dependent on the server queue manager.
In a multi-server scenario, clients employ message channels, which sup-
port unidirectional, safe, and asynchronous message exchange. Channels
are a form of end-to-end service provision and consist of the source queue
manager, a number of intermediate managers, and the destination queue
manager. The footprint of the system is 64K for Palm and 100K for a class
file with Java devices [IBM02b].

2.4 Event Systems

This section presents event systems and prototypes. We present the Cam-
bridge Event Architecture, Siena, Scribe, Elvin, JEDI, ECho, JECho, Re-
beca, Gryphon, STREAM, and Rapide.

2.4.1 The Cambridge Event Architecture

The Cambridge Event Architecture (CEA) uses the publish-register-notify
paradigm [BMH+00], in which the object publishes its interface, for exam-
ple specified in IDL (Interface Definition Language, which is different from
the IDL in CORBA). This interface includes the events of which it is capable
of notifying. A client invokes the object synchronously and can register for

44

2.4. EVENT SYSTEMS

events by indicating parameters (attributes) or wildcards. Wildcard match-
ing is applied on the parameters of a notification, but it may not be applied
on the event type. The template system provides rudimentary filtering by
matching parameters one by one. The object accepts registrations and
notifies the clients that match the registration template. The notification is
performed when the event firing conditions and access restrictions are sat-
isfied (Figure 2.15). The paradigm supports direct source-to-client event
notification.

Event client

i

Event source

Synchronous

interface

Registration

interface

Notify

Synchronous method invocation

Register interest in event

Notification interface

Asynchronous notification of

matching events

Figure 2.15: A publish-register-notify event architecture [BMH+00].

In CEA an object, if asked, publishes the events it is capable of noti-
fying of in IDL. The object has a register method in its interface that has
parameters for the type of event and wildcards. Event occurrences are
objects of a specific type, and the set of types defines the level of event
detection and notification granularity. CEA enforces access control upon
registration, and authentication is based on a parameter value.

CEA supports defining intermediate services, which are called event
mediators in the architecture. Event mediators act as middlemen between
primitive event sources and event clients, and provide the facilities for de-
tecting more complex events. Moreover, if an event source cannot afford
the overhead of supporting template matching, it can send all its events
to the mediator. The mediator then matches the template on behalf of the
source.

The mediator is capable of providing equivalent functionality to the
CORBA event service. The CORBA event service registers interests in
all notifiable events with event sources and supports both a synchronous

45

CHAPTER 2. EVENT-BASED SYSTEMS

pull interface and an asynchronous push interface. Composite events can
be detected by giving mediators the capability to filter simple events of
different types across different sources.

The composite event detection functionality supported in CEA is a fea-
ture that is not present in many event systems. The event composition is
supported by the combination of event templates. Composite events are
detected by monitors, which are busy until the event is detected and fired.
A composite event specification language may be used to design a mon-
itor that detects complex templates. The system has been demonstrated
by implementing an active badge system that monitors badges within a
building.

Composite events have also been investigated at Cambridge [PSB03]
recently. This paper presents a distributed framework for composite event
detection and notification in a distributed environment. The system is
based on JMS, and leverages the features of the underlying architec-
ture. The key benefits of the proposed approach are the distribution of
the detection task, an automata-based detection engine, and the use of
an interval time model to detect the causality of events. A Lamport Log-
ical Scalar Clock gives a causal ordering if such exists (but not a strict
causal ordering). The paper presents a specification language for com-
posite events. The system transforms the specification language to finite
state machines. Formal semantics are given for the interval time model.
The problem of translating non-deterministic automata to deterministic is
not discussed other than to mention that the current implementation uses
non-deterministic automata with a list implementation.

2.4.2 Scalable Internet Event Notification Architecture

Siena (Scalable Internet Event Notification Service) is an Internet-scale
event notification service developed at the University of Colorado. Siena
balances expressiveness with scalability and explores content-based rout-
ing in a wide-area network. The basic publish-subscribe mechanism is
extended with advertisements that are used to optimize the routing of sub-
scriptions [CRW99].

Several network topologies are supported in the architecture, includ-
ing hierarchical, acyclic peer-to-peer, and general peer-to-peer topologies.
Servers only know about their neighbors, which minimizes routing table
management overhead. Servers employ a server-server protocol to com-
municate with their peers and a client-server protocol to communicate with
the clients that subscribe to notifications. It is also possible to create hybrid

46

http://www.cs.colorado.edu/users/carzanig/siena/

2.4. EVENT SYSTEMS

network topologies.
Siena is similar to IP-multicast, however, the two mechanisms differ

in the way they support groups of subscribers. IP groups are not very
expressive. They partition the IP datagram address space and each data-
gram can belong to at most one group. Clearly, this creates problems if an
event that spans several groups of subscribers is to be delivered.

Four different server topologies have been identified in Siena:

• Centralized

• Hierarchical

• Acyclic peer-to-peer

• Generic peer-to-peer

Naming and Filtering

Siena is implemented with a flat event namespace, i.e. event names have
no structural correlation with each other. An event consists of a set of at-
tribute-value pairs. Each attribute has a name and a value. Siena supports
the types null, string, long, integer, double, and boolean.

A filter consists of an attribute name, a constraint operator, and a con-
straint. Siena does not support wildcards in the attribute name so the
attribute names must match exactly to the names in the published event.
A filter may include several filtering clauses, which are ANDed together.
Thus every filtering clause or component must return true in order for the
filter to pass the event. Siena supports the operators equal, less than,
greater than, greater than or equal to, less than or equal to, string prefix,
string suffix, always matches, not equal, and substring.

An example event:

string stock "abc"
int value 2.53

An example filter:

string stock = "cde"
int value > 1.0
int value < 1.5

Siena supports patterns, which are based on event attribute values and
event combinations. A pattern is a sequence of filters that is matched to

47

CHAPTER 2. EVENT-BASED SYSTEMS

a temporally ordered sequence of notifications. Network latencies may
cause some events to arrive in the wrong order, and these are ignored by
the Siena solution.

Routing

In Siena, each event consists of a set of attribute-value pairs that are
matched with filters. Each server on the event system routes events to
other servers based on subscription information, advertisement informa-
tion, and filters. Each subscriber may specify a filter to constrain the sub-
scription. In the same fashion, each advertisement may also include a
filter. Siena evaluates the filters and follows a policy where events are
replicated downstream and filtered upstream. This means that events are
replicated to the clients at the last possible moment, thus reducing the
bandwidth needed to transmit the events. Upstream filtering means that
events are filtered as close to the sources as possible in order to reduce
the number of uninteresting events transmitted over the network. The sim-
ple filter syntax allows the decomposition of a complex filter into several
more general filters, which can be evaluated upstream. A filter is only
applied if it is less general than the one used in upstream.

The same principle of upstream filtering also applies to event patterns.
Patterns are decomposed (factored) into elementary filters that are dele-
gated to other servers. In the delegation process a server tries to assemble
subpatterns that are delegable to other servers.

Siena uses covering relations to determine when a filter covers a no-
tification, a subscription covers a notification, an advertisement covers a
notification, or an advertisement covers a subscription. For example, sub-
scription S1 covers S2 if it evaluates to true in every instance where S2 is
true. Servers propagate the most generic subscription that covers a given
set of subscriptions. This minimizes the downstream data structures, how-
ever, the complex computation cost is paid closer to the subscriber, be-
cause the subscriptions need to be matched and evaluated. The results of
Siena indicate that the covering relations exhibit a complexity that is quite
reasonable for a scalable service.

The Siena system supports two different notification semantics: sub-
scription-based and advertisement-based. In subscription-based seman-
tics subscriptions are introduced at every node of the event service and
a notification is routed if it covers a subscription. In advertisement-based
routing servers use the information provided by event producers to route
incoming subscriptions. A subscription is only forwarded if it covers the
advertisement.

48

2.4. EVENT SYSTEMS

Forwarding Algorithm

The forwarding algorithm that was developed in conjunction with the Siena
project consists of a forwarding table and a set of processing functions.
Conceptually the forwarding table is a mapping between predicates (sets
of filters) and interfaces to neighboring nodes. Each predicate is a dis-
junction of filters, where each filter is a conjunction of elementary condi-
tions. Each elementary conjunction must return true in order for a filter
(and predicate) to map to an interface. Each filter may map to several
interfaces [CDW01].

The forwarding algorithm iterates over the event attributes. It searches
for a partial match from the set of filters, where a constraint belonging to a
filter is matched by the given attribute. If the filter (with the partial match)
is not yet associated with an interface, the algorithm increases a counter
to keep track of matched constraints for the given filter. If the counter size
is equal to the number of constraints in the filter, the filter is said to match.
After processing one filter the algorithm checks if all filters are matched.
The algorithm stops if either all attributes of the notification or all filters are
processed.

The number of interfaces thus imposes an upper bound on the pro-
cessing along with the number of attributes and filters. The forwarding
algorithm is optimized using binary trees and lookup indices for attributes
used in the filters.

The performance and scalability of the forwarding algorithm were dem-
onstrated by running experiments with 1000 messages and various num-
bers of filters and other parameters. It was found that the algorithm has
good absolute performance and good cost amortization over a variety of
loads. The constraint index, which acts as a lookup table for attribute
names over constraints, is used to quickly detect attribute names that have
no matching constraints. If no attributes match the event can be discarded
by the router.

The filter matching algorithm has recently been extended with several
optimizations [CW03]. The algorithm uses a matching structure based on
an index and selections over attribute filters. The paper proposes several
enhancements, namely the selectivity table that is used to prune those
predicates that cannot be matched.

Implementation

The current Siena implementation is a prototype that consists of Siena
servers and client-level interfaces. The C++ version supports the peer-to-

49

CHAPTER 2. EVENT-BASED SYSTEMS

peer server and the Java version supports hierarchical servers. Currently,
the C++ implementation is not compatible with the Java version. The Siena
implementation uses TCP/IP for communication.

Simulation

The algorithms and topologies used in Siena were examined in a simu-
lated environment. The hierarchical client-server architecture should be
used when there is a low number of parties that subscribe and unsub-
scribe frequently. The acyclic peer-to-peer model was found to be more
applicable to situations where the total cost is dominated by notifications
and there are many ignored notifications [CRW99].

Current and Future Developments

Columbia University has developed the XML-based Universal Event Ser-
vice (XUES) that consists of three main services that support event han-
dling for the Kinesthetics eXtreme (KX) real-time monitoring architecture.
The system inputs events using the Event Packager, analyzes events us-
ing the Event Distiller, and dispatches events using the Event Notifier. The
system interacts with other event systems using XML, FleXML, and Siena.

During the development of the Siena-XML interface [Ere01] several
problems with translating an XML-based hierarchical namespace to a flat
namespace were identified and addressed. In the conversion process the
nested structure of XML documents is converted into flat names that pre-
serve the hierarchy by separating the hierarchies with dots. This is a typical
way of describing hierarchical content; another would be to use the Win-
dows or Unix file system notation. Now, a problem arises when there are
duplicate elements in a hierarchy, which translate to an item with multiple
values. Siena does not support this, and the Siena-XML interface currently
ignores these duplicate values. One solution would be to include support
for wildcards or multiple sets of values, for example simple list objects.

In the future Siena is envisaged to integrate at the network service
level, coexisting for example with TCP/IP instead of working above the
network level. This would eliminate an extra protocol layer, and provide
greater efficiency in routing and forwarding. From the Siena viewpoint
TCP/IP performs explicit address routing and Siena is based on content-
based addressing. The risk in using Siena as a network service is that
content-based routing is computationally more expensive than explicit-ad-
dress or subject-based routing [Ros01b].

50

http://www.ucf.ics.uci.edu/~jerenk/siena-xml/

2.4. EVENT SYSTEMS

There is also work to make Siena support satellite-based wireless com-
munication. Satellite-based communication has desirable properties for
transmitting events, because routing is not necessary when the events
are broadcasted rather than sent using point-to-point communication lines.
Thus it is possible to notify large numbers of interested parties in one hop.
However, wireless networking is more unreliable than wired networking.
Moreover, the receiving devices may be different from desktop computers,
thus requiring the solution to cope with limited resources.

Siena has also been used as a peer-to-peer network similar to Gnu-
tella. The Java-based Quad uses the Siena prototype and supports query,
advertise, and response. One of the differences between Quad and Gnu-
tella is that with Gnutella the messages are propagated to all servers and
filtering is performed by the provider at the last step. The main architec-
tural difference between Gnutella and Quad is the separation of clients and
servers. Thus the general advantage of peer-to-peer systems in dynamic
networking is lost [Hei01].

Siena has been extended to support mobility and wireless clients. The
mobility support involves a handover protocol that uses either subscription-
based or advertisement-based semantics [CCW03].

One of the findings of the Siena project is that expressiveness and
scalability are in conflict. Expressiveness is related to flexibility of notifica-
tion and routing. Scalability, on the other hand, is about vast dimensions,
heterogeneity, decentralization, and the use of resources.

2.4.3 Scribe

Scribe [CDKR02] is a topic-based publish-subscribe system that explores
the scalability of the notification service in peer-to-peer environments. It
is built on top of Pastry, which is a scalable, self-organizing peer-to-peer
location and routing system. Scribe provides an application-level multicast
system. Pastry is based on uniform ID keys that are used as host ad-
dresses. The system routes a message to the closest possible key. Scribe
provides a best-effort notification delivery on top of Pastry and specifies
no particular event delivery order. Moreover, Scribe does not support fil-
tering, buffering, or mobility. The rendezvous point forms the root of a
multicast tree. In other words, the responsibility for a given topic (group of
subscribers) is hashed over the set of the servers. When a subscribe mes-
sage is routed towards the rendezvous point, each intermediate node adds
the previous node to its table of children. This information is used in the
multicast protocol, which is similar to reverse path forwarding. Events may

51

CHAPTER 2. EVENT-BASED SYSTEMS

be published directly if the IP address of the rendezvous point is known.
However, subscriptions need to be routed within the peer-to-peer topology.
Access control can be enforced at the rendezvous point. Pastry can route
around faulty nodes by resending the subscription and thus repairing the
multicast tree.

2.4.4 Elvin

Distributed Systems Technology Centre (DSTC) has been developing the
Elvin system since 1993 and it has grown from a single person research
project to an effort with a team of programmers and researchers. Elvin is a
general event notification service, which aims to improve on features iden-
tified in a 1995 survey of commercial event filtering software. Elvin started
as a publish-subscribe notification service, but currently it is referred to as
a content-based routing service. The Elvin team aims to standardize the
Elvin protocol through the Internet Engineering Task Force (IETF), and the
Elvin protocols are written in the style of IETF drafts. DSTC was a contrib-
utor to the OMG Notification Service RFP and one of the submitters of the
CORBA Notification Service.

Elvin uses a client-server architecture in notification delivery. Clients
establish sessions with Elvin servers and subscribe and publish notifica-
tions. An Elvin notification is a list of name-value pairs, similarly to that
of Siena. Basic primitives are a 32- and 64-bit integer, a 64-bit double
precision floating point, an internationalized string (UTF-8 encoded), and
an array of bytes. Subscription expressions are defined using logical ex-
pressions with a C-like syntax: “stock == "abc" && value > 80”. The ex-
pressions are evaluated with Lukasiewicz’s tri-state logic that uses an ad-
ditional value of indefinite (i.e. true, false, indefinite).

Elvin has language bindings for C, C++, Emacs Lisp, Java, Python,
Smalltalk, and Tcl. Elvin is content-based, because it allows routing deci-
sions to be made based on the whole message. Elvin features a decou-
pled security model, in contrast with the traditional point-to-point model,
in which communication between publishers and subscribers is authenti-
cated with keys. Producers and consumers can have overlapping key sets.
This supports multi-party authorization.

Service discovery is done using a lightweight protocol that is based on
multicast. Once a server has been deployed on the network, clients use
the protocol to discover the server and dynamically register. Clients also
listen to router advertisements, which are also distributed using multicast.

Elvin 4.1 was released on March 19th in 2003. This version includes

52

http://elvin.dstc.edu.au/index.html

2.4. EVENT SYSTEMS

web-based router management, configurable quality of service, support
for automatic failover of standby routers, federation between routers, and
new scalability support.

Clustering

Elvin supports local clustering of servers that improves scalability and dis-
tributes the local load. Clustering is used to implement a distributed, but
single-subscription, address space. Routers within a cluster communicate
using a reliable multicast protocol over an IP network. An Elvin router
may force a client to reconnect to another server in order to reduce load.
The Elvin cluster is similar in functionality to a web farm. An Elvin router
is a daemon process that runs on a single server and distributes Elvin
messages. Each router in an Elvin cluster shares client subscription infor-
mation with every other node. Not all subscription information is shared,
but only sufficiently in order for a router to decide if a given notification has
any subscribers at any server.

The initial forwarding decision in server-server communication is done
based on a list of terms. Messages are first analyzed at a local router and
then multicast to the cluster. The set of destination routers is determined
before multicasting by matching the message against the term list. Each
packet contains the unique identifiers of the routers that have matching
terms. This hasty approach results in a number of unnecessary notifica-
tions at the router level. The Elvin team aims to improve this in the next
version of the system.

The Elvin cluster topology consists of a single master router and a num-
ber of slave routers. The master router maintains management data. All
slave routers listen to management traffic within the cluster and keep infor-
mation about every node. Routers also keep information about subscrip-
tion terms of other servers, current states, the list of URLs offered by a
router for client connection, and current router load and statistics. Master
servers listen for join packets and keep track of the cluster as a whole. A
new master router is elected using an election protocol if the old one fails.

Communication between clients and routers employs RPC-style com-
munication with positive and negative acknowledgements. Delivery has
best effort, at-most-once semantics. In the client-server protocol the server
may drop notifications, but is obliged to warn the client that it has done so.

53

CHAPTER 2. EVENT-BASED SYSTEMS

Federation

There is a different protocol for linking distributed clusters of servers to a
federated system. The Elvin federation protocol assumes that the feder-
ated topology forms a spanning tree. Moreover, the linking protocol sup-
ports the definition of pull filters that constrain the notifications sent to other
clusters.

Quench

In Elvin terminology quench means an operation supported by all event
producers that gives the producers the possibility to evaluate a subscrip-
tion expression to cease producing events that are no longer needed.
Quench is also used to determine which notifications should be produced.
In CORBA this would mean that the first event channel refrains from for-
warding unnecessary notifications (CORBA does not support client side
filtering). The quench is a semantic extension of the subscribe mecha-
nism

In Elvin quench is implemented in the client-server protocol. Any client
may request to be notified when the subscription status of the server
changes. The client may request information on named attributes in sub-
scriptions. The requested information is sent as an abstract syntax tree.
There is also support for an automatic quench, which is implemented in
the client library.

Mobile Users

Elvin has been extended to support mobile users. One of the require-
ments was persistence in order to keep undelivered notifications. Elvin is
non-persistent by design so a prototype proxy was designed to store notifi-
cations. The proxy model extends the client-server architecture of Elvin by
introducing the proxy as a third component. Proxies act as normal clients
to servers, but as proxy servers to clients. In this design, clients connect
to these proxies, which mediate the Elvin service [SAS01].

The proxy is able to handle multiple clients with separate sets of sub-
scriptions. Elvin did not support subscription grouping by the client, so
support for this was added to the system (the concept of a session). These
sessions need not be client-specific, but may rather span multiple clients
or applications. This stems from the observation that many people have
several devices, but may wish to receive the same set of information re-
gardless of the medium. In order to manage the storage space for un-

54

2.4. EVENT SYSTEMS

delivered notifications, the proxy supports the definition of a time-to-live
(TTL) for each subscription. In addition, clients may specify the maximum
number of notifications to keep.

In the current prototype clients explicitly connect to the proxy, and they
must connect to the same proxy to retrieve notifications. Proxy discovery
and roaming between proxies is not supported. The Elvin proxy service
is proposed as a solution to proxy roaming and client migration between
networks. However, the difficulty lies in that the proxy is a stateful entity,
whereas normal Elvin servers are stateless.

Non-destructive Notification Receipt

For users who use many different devices and wish to share notifications,
Elvin supports non-destructive notification receipt. This means that the
proxy does not destroy a notification upon its successful delivery. Elvin
ensures that notifications are never delivered to the same client more than
once.

Because sessions may contain a number of clients, Elvin supports ad-
ditional management functionality regarding the set of subscription set by
clients. Each client is informed of the current subscription status. There
may also be a number of sessions per client, in which case only one noti-
fication is sent even if there are multiple matches.

2.4.5 JEDI

Java Event-based Distributed Infrastructure (JEDI) is a distributed event
system developed at Cefriel at Politecnico di Milano. In JEDI the distributed
architecture consists of a set of dispatching servers (DS) that are con-
nected in a tree structure [CDN01]. Each DS is located on a node of the
tree and all nodes except the root node are connected to one parent DS.
Each node has zero or more descendants. Event subscription and unsub-
scription requests are propagated by each DS upwards towards the root.
Event notifications are processed similarly and forwarded by the local DS
to its parent. Upon receiving an event, each DS checks its descendants
if they have an interest in the event, and, if required, forwards the event
down the tree.

This strategy requires that a given DS knows the event requests of its
descendants in order to make the forwarding decision. Moreover, since all
requests and notifications are propagated up the tree, the communication
and processing overhead of the nodes near the root may become a bottle-

55

CHAPTER 2. EVENT-BASED SYSTEMS

neck. If any of the nodes near the root become disabled, parts of the tree
become isolated. In this case the system needs to deal with segmentation
and to be able to mend the tree or negotiate a new root and a new tree.

A JEDI event is an ordered set of strings, the first string being the name
of the event followed by event parameters. An Event Dispatcher can sub-
scribe to a single event or an event pattern. Event patterns are used to filter
events based on parameter matching, for example foo(aa*,bb) matches
all events named foo that have exactly two parameters and the first pa-
rameter starts with aa and the second parameter is exactly bb.

JEDI preserves causal ordering of messages, that is, if event e1 caused
the firing of event e2, e1 must be delivered first to all interested subscribers.
This mechanism allows a pair of components to synchronize through the
generation of events [CDNF01].

The JEDI architecture is being extended to support mobile clients and
ad-hoc configuration [CDNP00]. Publish/subscribe middleware makes a
good candidate for utilizing context-aware computing. Asynchronous in-
terest-based communication is a good start for building decoupled and
adaptive software components. Compositionality and reconfigurability are
being emphasized in JEDI and system supports mobility with moveOut
and moveIn operations.

DS

DS DS

DSDS

DS

Active

Object

Figure 2.16: Event propagation in JEDI.

The dispatching servers in the JEDI architecture support mobility by
allowing clients to disconnect, move to a new dispatching server, and con-

56

2.4. EVENT SYSTEMS

nect while retaining all the notifications. The dispatching servers manage
temporary storage for notifications. They also coordinate that no dupli-
cates are received and that the notifications are causally ordered [CDN01].
The new dispatching server contacts the old one directly in order to receive
the accumulated notifications. The old DS notifies its parent dispatching
server to route any further notifications for this client to the new DS.

Notifications are routed in the JEDI dispatching tree from producers to
consumers and there is no possibility for adapting the routing strategy to
reflect changes in the pattern of communication. The system offers good
performance if the tree is organized in a good way that minimizes network
traffic. In essence, when clients migrate from one dispatching server to
another the load placed on the servers changes. It may be necessary to
recreate the dispatching topology to reflect these changes.

JEDI approaches the adaptation of publish/subscribe systems to more
dynamic environments by extending the event routing mechanism with the
addition of a new spanning tree routing algorithm. Now, a delegate leader
is responsible for each subscription. The delegate accepts subscriptions
of similar type and becomes the leader of the subscribers. It also manages
the distribution of the group in the tree. Each dispatcher knows the group
leaders for all subscriptions [CDNF01].

The JEDI approach is based on dynamically defining the dispatching
tree by using approaches similar to multicast routing. The first strategy is
to create a minimal spanning tree for each pair of publisher and group of
subscribers, but this is considered to be inefficient. The second strategy
is to have a single routing tree for each group of subscribers and have
different publishers for the same class of events use the same tree.

JEDI uses a method called the Core Based Tree Strategy, in which the
dispatchers are connected in a possibly cyclic graph and each dispatcher
knows its neighbors. Dispatchers broadcast all unique subscriptions to all
servers, and all subsequent subscriptions of the same type are sent to the
party that sent the original subscription. The original source dispatcher
has implicitly become the leader of a group of subscribers, and it main-
tains access to that group. Now, the source may balance load by assign-
ing subscriptions to dispatching servers. All dispatchers know all group
leaders, and those dispatchers that belong a group know the dispatching
tree of that group. When a component unsubscribes, the associated dis-
patcher either leaves the group, continues to route notifications, or, if it was
a leader, the system needs to elect a new leader for that group.

Mobility support in JEDI is still under consideration, for example the
latency of updating the dispatching trees when clients are moving very
frequently and in the case of abrupt disconnections are still open issues.

57

CHAPTER 2. EVENT-BASED SYSTEMS

The current focus is on what kind of abstractions are needed at lower levels
in order to detect disconnections at upper level. The scalability of the JEDI
system to Internet-wide use is an open issue. JEDI was used to implement
the Orchestra Process Support System (OPSS) workflow management
system (WFMS) [CDNF01].

The JEDI subscription propagation algorithm was improved later by
introducing advertisements. This new algorithm is similar to the Siena
work, and covering relations are used to optimize routing. The impact
of advertisements was evaluated using simulation, and the results show
that with advertisements the root node spends much less time processing
subscriptions. The simulation results on 8 to 85 dispatchers indicate that
the processing time of advertisements is quite low (between 2.65% and
2.9%) [BDNFT00, BDNT00].

The JEDI project ended in 2000 and Cefriel has continued to work on
event architectures. They have a project on fault tolerance and scala-
bility issues in distributed communication based on the publish/subscribe
paradigm. They continue to use the JEDI event dispatchers as a reference
implementation. The goal of this research is to implement a fault-tolerant
JEDI.

2.4.6 ECho

ECho is a high-performance data transport mechanism that is based on
event channels [EBS01]. ECho uses channel-based subscriptions , simi-
larly to the CORBA Event Service. ECho’s derived event channel mech-
anism implements filtering by adding an application-supplied derivation
function F to all listeners of a particular event channel, and by transfer-
ring all events that are generated by the sources and passed through the
filters to a derived event channel. This scheme resolves issues in the de-
livery of unwanted events. ECho is especially optimized for streaming data
and data transmission. ECho has been shown to perform better than Jini
(distributed Java events), CORBA Event Channels, and XML-based mes-
saging. ECho was developed at Georgia Tech and the source is available
for academic research purposes.

2.4.7 JECho

JECho is a distributed event system that has been recently extended to
support mobility using opportunistic event channels [CSZ03]. The central
problem is to support a dynamic event delivery topology, which adapts to

58

2.4. EVENT SYSTEMS

mobile clients and different mobility patterns. The requirements are ad-
dressed primarily using two mechanisms: proactively locating more suit-
able brokers and using a mobility protocol between brokers, and using a
load-balancing system based on a central load-balancing component that
monitors brokers in a domain. The mobility protocol is, in principle, similar
to most mobility protocols (Wireless CORBA, Siena, Rebeca, . . .).

The filtering model is based on stateful user-defined objects, called
modulators, which may transform the event stream. This allows more fine-
grained filtering than non-state-based predicate matching. However, pos-
sible security problems are not addressed, and it may be difficult to do
optimizations between similar modulators. In addition, client-based filter-
ing is not addressed and it may also be difficult to implement efficiently.
For example, a mobile producer should download all relevant modulators
from the broker. Furthermore, no session management is provided so all
user-specific modulators are relocated.

The system supports load balancing and resource monitoring, which
are novel features for mobility-aware event systems. The paper presents
simulation results for different scenarios, for example, relocation overhead
and mobility patterns. Mobility patterns are examined in a 100-node net-
work using BRITE and the evaluation includes scenarios such as random
walk, salesman, pop-up, and fixed. Moreover, end-to-end delay and mo-
bility/communication ratio are measured using a real system with two sub-
nets.

2.4.8 Rebeca

Rebeca is a distributed event system that supports mobile users and con-
text-aware subscriptions [FGKZ03]. The system supports both logical and
physical mobility. The basic system is an acyclic routed event network us-
ing advertisement semantics. The mobility protocol uses an intermediate
node between the source and target of mobility, called Junction, for syn-
chronizing the servers. If the brokers keep track of every subscription, the
Junction is the first node with a subscription that matches the relocated
subscription propagated from the target broker. If covering relations or
merging are used this information is lost, and the Junction needs to use
content-based flooding to locate the source broker. A merging system was
developed in the Rebeca project for conjunctive filters.

59

CHAPTER 2. EVENT-BASED SYSTEMS

2.4.9 Gryphon

The Gryphon system was developed at the Distributed Messaging Sys-
tems group at the IBM T.J. Watson Research Center. Gryphon is a Java-
based publish-subscribe message broker intended to distribute data in real
time over a large public network. Gryphon uses content-based routing al-
gorithms developed at the research center. The clients of Gryphon use
an implementation of the JMS API to send and receive messages. The
Gryphon project was started in 1997 to develop the next generation web
applications and the first deployments were made in 1999.

Gryphon is designed to be scalable, and it was used to deliver informa-
tion about the Tennis Australian Open to 50000 concurrently connected
clients. Gryphon has also been deployed over the Internet for other real-
time sports score distribution, for example the Tennis US Open, Ryder
Cup, and monitoring and statistics reporting at the Sydney Olympics.

The Gryphon system supports both topic-based and content-based
publish-subscribe, relies on adopted standards such as TCP/IP and HTTP,
and supports recovery from server failures and security. In Gryphon, the
flow of streams of events is described using an information flow graph
(IFG), which specifies the selective delivery of events, the transformation
of events, and the creation of derived events as a function of states com-
puted from event histories.

Information flow graphs contain stateless event transforms that com-
bine events from various sources, and stateful event interpretation func-
tions that can be used to derive trends, alarms, and summaries from pub-
lished events. Each event is a typed tuple. Stateful events depend on the
event history. States are used to express the meaning of an event stream
and the equivalence of two event streams.

The Gryphon model consists of information spaces, which are either
event histories or states. Event histories grow monotonically over time as
new events are published. Event sources and sinks are modeled as event
histories. States capture certain relevant information about event streams,
and they are typically not monotonic. Information spaces are defined using
information schemas. Dataflows are directed arcs that connect nodes in
the graph, which needs to be acyclic [BKS+99].

Gryphon supports four types of dataflows. Select is an arc that con-
nects two event histories with the same schema. Each arc is a predicate
on the attributes of the event type in the information space. All events that
satisfy the constraint are delivered to the destination information space.
The transform arc connects any two event histories that may have differ-
ent schemas. Each arc has a rule for mapping event types between the

60

http://www.research.ibm.com/gryphon/

2.4. EVENT SYSTEMS

two spaces. This rule may include functions that transform particular event
attributes. The collapse arc connects an event history to a state using a
rule. The rule maps a new event and a current state into a new state. The
expand arc is the inverse of collapse, and links a state to an information
space. When the state at the source of the arc changes, the destination
space is updated in such as way that the sequence of events it contains
collapses to the new state. This transformation is non-deterministic.

Gryphon has two techniques for the implementation of systems based
on IFGs. The first is a flow graph rewriting optimization that allows state-
less IFGs to be used with multicast technology. The second is an algorithm
for converting a sequence of events to the shortest equivalent sequence
of events.

The information flow graph is abstract and separated from the physical
topology of the network. The mapping of an IFG to a network of mes-
sage brokers is nontrivial. Gryphon reduces an arbitrary IFG by rewriting
it. All the select operations are moved together and closer to publishers
and all the transform operations are also grouped together closer to the
subscribers. Transform operations are done at the periphery of the net-
work.

The Gryphon system allows the representation of event histories as
states, which is interesting especially for mobile and disconnected users.
Wireless users would benefit if a system could inform them with a sum-
mary of events that occurred while they were disconnected (the state).
The Gryphon system detects failed brokers and reroutes traffic around
failed nodes. Moreover, the system incorporates several security mecha-
nisms, such as access control, and four authentication methods.

Gryphon supports the JMS publish/subscribe API and topic-based sub-
scription. In addition, clients may specify filters using the WHERE clause
of SQL92 supported by JMS. Gryphon extends the publish/subscribe one-
to-many model with request-reply and solicit-response models. By using
unique topics JMS users can use request-reply-style messaging. In the
solicit-response model a client may make an advertisement to which one
or several clients may respond privately.

The basic unit of the Gryphon multi-broker configuration is the cell,
which is a group of fully connected servers. Cells may be further linked to-
gether for geographical scaling through link bundles. Link bundles provide
redundant connections between cells, which includes load balancing and
fault tolerance not provided by gateway-based approaches. The internal
protocols and systems ensure that cycles are avoided and messages are
routed around failed nodes.

61

CHAPTER 2. EVENT-BASED SYSTEMS

2.4.10 STEAM

The STEAM (Scalable Timed Events and Mobility) event system is specif-
ically designed for wireless ad-hoc networks [MC03]. The system uses
three different filters to address the problems related to dynamic reconfigu-
ration of the network topology. Specifically, the STEAM system is intended
for WLANs using the ad-hoc network model, and the main application do-
main is traffic management. The system uses an implicit event model in
which entities subscribe to interesting event types locally, and not by using
a centralized broker. STEAM exploits a group communication service for
notifying interested entities. Groups are geographically bound and nodes
are identified using beacons.

The three filter types supported by STEAM are subject, proximity, and
content filters. Events consist of a name and a set of typed parameters.
The name also determines the structure of the event. A subject filter is
matched against the event and mapped onto a proximity group. A prox-
imity filter corresponds to the geographical aspect of the proximity group.
A proximity filter specifies the scope in which events are disseminated. A
proximity filter applies to an event type and is established when the type
is deployed. In essence, upon publication of an event the source matches
the subject and proximity, and the subscribers match the content. This
requires that the proximity filter at the producer must have location infor-
mation from the subscriber.

The paper does not explain how this information is acquired, how often
it is updated, and how the security implications are handled. In essence
the protocol is a wireless application-level broadcast protocol with subject-
based filtering at the source and content-based filtering at the client.

Producers announce the event types they intend to raise (publish) with
the geographical area, called the proximity, within which events of this type
are to be disseminated. The proximities may be defined independently of
the physical range of the communication system. The routing layer may
support multi-hop communication.

STEAM is based on the Proximity-based Group Communication Ser-
vice (PGCS). In this service, groups are assigned certain geographical
areas. A node that wants to join a group needs to be located in the group’s
area. STEAM provides a Proximity Discovery Service (PDS) that uses
beacons to discover proximities. Once a proximity is discovered the asso-
ciated events are delivered to the client if it has a matching subscription.
PDS causes the middleware to join a group if either a subscription or an
announcement matches the group. The proximities are static but clients
may move.

62

2.5. CONCLUSIONS

An experimental scenario is presented in [MC03]: traffic lights at an
intersection with experimental results with and without filtering. The results
suggest that distributed filtering, although simple in this case, is beneficial
in ad-hoc environments and may reduce the amount of transmitted traffic
significantly.

2.4.11 Rapide

The Rapide language is designed to meet the requirements for architec-
tural definition [LV95]. The main idea of Rapide is to use asynchronous
events and their causal relations to model both static and dynamic archi-
tectures. In this context, an architecture consists of interfaces, connec-
tions, and constraints — an interface connection architecture. When the
architecture specification is executed all causal relations are stored and
checked against the constraints. The key requirements for the system
were component abstraction, communication abstraction, communication
integrity, dynamicity, causality and time, hierarchical refinement, and rela-
tivity.

The interdependencies of Rapide components are modeled using par-
tially ordered sets. A pattern language is defined for detecting composite
events. An event of a particular action is a tuple of information with a
unique identifier, a timestamp, and dependency information. The system
supports placeholders and universal quantification over types. Patterns
are used in interfaces to define behaviors and in architectures to define
connections.

2.5 Conclusions

Message-oriented middleware and event notification are becoming more
popular in the industry with the advent of the CORBA Notification Service,
the Java Messaging Service, and other related specifications and prod-
ucts from many vendors. Many research projects have addressed and
are addressing issues of scalability, compound event detection, mobility,
and fault tolerance, to name a few topics. There are many ways to clas-
sify event systems, and many possibilities for their use depending on the
requirements.

Traditional MOM systems are getting influences from event-based sys-
tems. For instance, JMS supports both queues and publish-subscribe
style communication with filtering. However, these systems usually lack

63

CHAPTER 2. EVENT-BASED SYSTEMS

support for distributed coordination in notification delivery, and they em-
ploy topic-based routing. Current event systems are evolving towards con-
tent-based routing, which uses the whole notification as an address. In
content-based systems clients can change their interests without chang-
ing the addressing scheme (adding a new topic).

Scalability has been emphasized in Siena, and it has been designed for
Internet-wide scalability and tested in a simulation environment with var-
ious network topologies. Wide-area operation introduces latency, which
creates problems for notification semantics and mobility. Other systems
address scalability and fault tolerance by creating clusters (Elvin) or cells
(Gryphon) that contain connected servers. These clusters are connected
using point-to-point links and possibly different protocols. Multicast and
fault tolerance can be provided within the clusters. Event systems are log-
ically centralized, however, the CORBA Event Channel is also physically
centralized, creating a possible bottleneck.

Ad-hoc networks are emerging with the introduction of short-range ra-
dio communications. Ad-hoc event systems support the dynamic addition
and removal of event servers (or event dispatchers). Ad-hoc event topolo-
gies are currently an emerging research topic and some research issues
have been raised in JEDI. STEAM supports ad-hoc event dissemination
and proximity groups.

From the mobile Internet and ubiquitous computing viewpoint JEDI and
Elvin were one of the first systems to examine support for disconnected
operation. JEDI supports both mobility and disconnected operation as a
service and Elvin only disconnected operation (with a few additional fea-
tures) as an extension to the original architecture. Almost all message
queue products support disconnected clients with various semantics. One
important decision is whether to include mobility support as an extension
or as an integral part of the event service. If fault tolerance or mobility
are to be supported, it may be necessary to integrate this functionality at
the service level. Another open issue is whether the event service should
reside at the network level or at the application level. For Internet-scale
routing, as proposed in Siena, it might be beneficial to have some support
at the network level. Siena has recently been extended to support mobile
clients, and JECho and Rebeca also have a handover procedure for relo-
cating subscriptions. Content-based routing and mobility is a challenging
combination and most routed event systems that use covering relations or
filter merging may need to use flooding in the mobility protocol.

Only a few architectures support complex compound event filtering.
Usually event filtering is done using simple parameter wildcard matching
(JEDI), simple clauses (COM+, Elvin), SQL (JMS, Gryphon), or Extended

64

2.5. CONCLUSIONS

TCL (CORBA). Compound event detection is supported in CEA with event
templates and in Siena by detecting a sequence of simple filters. Com-
pound event detection is also a feature that may be integrated as an exter-
nal component or within the infrastructure.

Many systems do not consider the process of locating and connect-
ing producers or of locating event channels (Notification Service). Some
architectures, such as Siena, JEDI, and Elvin, support this within the infra-
structure. There are two completely different problems: one is locating an
access point using multicast or unicast to a known address, and another
is to use either the infrastructure or some other service to locate channels
or to subscribe. In systems such as Siena and JEDI, subscription is per-
formed using the API and formulating a text-based filter. With CORBA it is
necessary to obtain an event channel and go through a more complicated
procedure in order to obtain references to proxy objects. This process of
obtaining the event channel reference according to interests is not speci-
fied.

Many message queue products are now supporting XML-based solu-
tions, such as SOAP, as one of the transport options. MQSeries, MSMQ,
and .NET support SOAP, and Siena has XML bindings as well. XML has
many applications in messaging and event-based communication. XML
can be used to define the content of messages. For example, JMS facili-
tates XML-based messages and the routing of XML documents.

However, the building blocks of the semantic web, such as ontologies,
are not yet supported. Ontologies and XML-derived languages could well
be used to define events and event systems, and to improve interoperabil-
ity. XML and a suitable ontology would enable the specification of complex
event monitoring tasks that are uploaded to routers or, for example, web
services.

65

CHAPTER 2. EVENT-BASED SYSTEMS

66

Chapter 3

XML Protocols

Services provided over the Internet are becoming increasingly a major
part of the current world. Currently the most often used system for imple-
menting these services is a Web browser sending its service requests to
Web servers, which then generate the responses dynamically. This sys-
tem leaves much to be desired as anything more complex has to be done
with add-ons such as cookies. Therefore the need for a more flexible and
powerful system is obvious.

The client-server, Request-Response paradigm described above con-
tributes much to the inflexibility of current service models. A new general
architecture and a protocol to go with it are needed, if new service models
are required. This system should also be simple to implement and provide
enough flexibility to allow rapid development and deployment of various
services.

We will review the concepts of XML and Web services and then con-
centrate on the protocol seen as the basis of these services. We will also
discuss issues related to these new services in wireless environments and
go through some proposed solutions.

3.1 XML

The standard way of marking up document structure on the World Wide
Web (WWW) is Hypertext Markup Language (HTML) [W3C99a], which is
based on Standard Generalized Markup Language (SGML) [ISO86] (the
technical term for HTML is an SGML application). SGML is a framework
for creating markup languages. This is done by writing a Document Type
Definition (DTD), which describes the allowed markup tags and their syn-
tax. SGML documents are typically hierarchical, i.e. elements (content

67

CHAPTER 3. XML PROTOCOLS

between a start tag and its corresponding end tag) contain other elements
in addition to text.

The intended way for an application to parse an HTML document is to
implement a full-blown SGML parser, which uses the HTML DTD to parse
each element according to its defined syntax. However, SGML allows DTD
writers to leave certain parts optional, which is useful for both cutting the
size of documents (e.g. by omitting end tags for specified elements) and
for decreasing the ratio between markup and actual content. This makes
writing an SGML parser difficult, and so WWW browsers typically imple-
ment only an HTML parser.

The World Wide Web Consortium (W3C), aware of the problems with
HTML being an SGML application, set out to simplify SGML. The re-
sult of this simplification is now known as Extensible Markup Language
(XML) [W3C04e] (the new version 1.1 [W3C04f] was prepared to address
some issues in character encodings, specifically the changing nature of
Unicode (http://www.unicode.org/standard/standard.html)). XML has
no implicit content: all start tags must have a corresponding end tag. In
addition, XML does not contain some rarely-used features of SGML.

<?xml version="1.0"?>
<message status="urgent">

<from>Boss</from>
<subject>Reports</subject>
<text>

I haven’t yet received those reports you promised
to deliver yesterday. I need them ASAP.

</text>
</message>

Figure 3.1: An Example XML Document

An example XML document is shown in Figure 3.1; tags are limited by
<>, end tags begin with /. The part between a start tag and its correspond-
ing end tag is called an element and the material strictly between them is
called the element’s content. Each element except the root (message in
the example) is contained in another element, called its parent element.
This contained element is naturally called a child element of its parent. An
element may contain attributes inside its start tag (status="urgent" in our
example). These attributes typically affect the processing of the element

68

http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html

3.2. WEB SERVICES

in some application-defined way.
As with SGML, specific markup languages can be created with XML

using a DTD. However, DTDs are not seen as a good fit for XML so
some alternatives to them have emerged. The most visible of these is
XML Schema ([W3C01a] and [W3C01b]), a W3C Recommendation. XML
Schema syntax is XML instead of the DTD language, so it seems to be a
better fit for XML data. Also, XML Schema allows a more fine-grained and
flexible approach to restricting element content. DTDs are still expected
to last for a while, though, mostly due to their already-familiar syntax and
established use base.

Other popular alternative schema languages are RELAX NG [OAS01]
and Schematron [Jel02]. RELAX NG aims to be simpler than XML Schema
with a strong theoretical grounding. Schematron is based on expressing
constraints on the documents in XPath [W3C99d], which makes it more
expressive than the other schema languages. RELAX NG is also an ISO
(http://www.iso.org) standard, and Schematron is in the process of be-
coming one.

3.2 Web Services

The term Web services has in recent times risen to prominence. The point
of Web services is to unite a large variety of different platforms into large
distributed systems using simple, standardized protocols and interfaces.
XML is an important component of Web services as they are realized to-
day.

The definition of a Web service has not always been very clear-cut.
However, there are certain overall characteristics that fit into all used defi-
nitions. The central one of these is the use of XML practically everywhere.
XML is used to describe the service interfaces, to locate services, and
even to encode the actual messages. XML is beneficial since it is flexible,
standardized, and popular.

The W3C has also embraced the Web services area with its Web Ser-
vices Activity (http://www.w3.org/2002/ws/), which was started in Jan-
uary 2002 as an extension to the XML Protocol Activity. This activity con-
sists of the Description (http://www.w3.org/2002/ws/desc/), XML Pro-
tocol (http://www.w3.org/2000/xp/Group/), and Choreography (http://
www.w3.org/2002/ws/chor/) Working Groups. The XML Protocol Work-
ing Group is the oldest of the three, started in 2000 as the XML Protocol
Activity.

69

http://www.iso.org
http://www.iso.org
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/

CHAPTER 3. XML PROTOCOLS

Originally, the Web Services Activity also included the Architecture
Working Group, but their work was concluded by the publication of a W3C
Note on the architecture of Web services [W3C04h]. Their work was not
continued, since their purpose was seen to not fit very well to the W3C’s
overall mission. Their definition of a Web service is available in the glos-
sary [W3C04i]:

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML seri-
alization in conjunction with other Web-related standards.

The XML Protocol Working Group has completed the basic Recom-
mendations on SOAP [W3C03d, W3C03e] and is now working on some
extensions. Of these, the XML-binary Optimized Packaging [W3C04j] and
SOAP Message Transmission Optimization Mechanism [W3C04g] are at
the Candidate Recommendation level. The Description Working Group’s
main Working Drafts [W3C04a, W3C04b, W3C04c] are based on the Web
Services Description Language (WSDL) specification [W3C01c] and are
currently at the Last Call stage. The intent of WSDL is to describe service
interfaces at the level of individual messages or operations. The Choreog-
raphy Working Group concentrates on a higher level than the other groups,
attempting to define patterns of message exchanges in Web services and
languages for describing these patterns.

Current integration work in the Web service area is largely coming
from Microsoft and IBM, who publish many of their technologies as W3C
Notes. Specifications related to Web services are also published by OA-
SIS (http://www.oasis-open.org), who have concentrated on integrating
existing Web service specifications and creating new ones based on exist-
ing business needs. The most important OASIS specifications in the Web
service area are the ebXML message service [OAS02b], which specifies
a messaging service built on top of SOAP, and Universal Description, Dis-
covery, and Integration (UDDI) [OAS02a] for description and discovery of
Web services.

It is expected that in the near future the number of mobile devices hav-
ing a continuous wireless connection to a network will increase rapidly.
Because of this, it is important to evaluate the various Web service tech-
nologies in light of the unique challenges offered by wirelessness and mo-
bility. Of the three parts of Web services, protocol, description, and dis-

70

http://www.oasis-open.org
http://www.oasis-open.org
http://www.oasis-open.org

3.3. PROTOCOLS

covery, the most obvious part to concentrate on is the protocol since that
one is most clearly affected by the move to wireless networking. In ad-
dition, if server components can be on a mobile platform, discovery will
be more complicated than with fixed services, though this will probably be
handled with special addressing schemes suitable for mobility rather than
by changing the actual discovery process.

3.3 Protocols

In considering the protocols we will be concentrating on SOAP as defined
by the W3C. However, the emerging issues are mostly related to XML use
as a message format and our considerations should be applicable to other
XML-based messaging systems.

3.3.1 History

The origins of SOAP lie with UserLand Software. Their Frontier product
is a content management system for the WWW. It also includes a Remote
Procedure Call (RPC) interface to more easily provide interconnections be-
tween various services on the WWW. For this RPC system, they designed
a new protocol, XML-RPC [Win99].

XML-RPC is a minimal protocol, intended to be used only for simple
RPC needs. There are provisions only for a single Request-Response
round trip messaging, there are only a few basic datatypes, and the only
transfer protocol is Hypertext Transfer Protocol (HTTP). These can also be
seen as advantages of XML-RPC. Due to its simplicity, it is easy to imple-
ment and there are in fact dozens of implementations in several different
languages. There are also no provisions for extensions so the specification
has remained stable for several years.

Even though other communication patterns can be built on top of a
RPC framework, this would require careful specification of interfaces and
messaging semantics. These challenges led to the need for an extensible
messaging system. Microsoft had expressed interest in utilizing XML-RPC
in their future products, so they teamed with UserLand to produce such a
system, which was named SOAP, for Simple Object Access Protocol.

SOAP gained popularity quite fast after its initial launch and other com-
panies joined Microsoft and UserLand in developing SOAP further. Ver-
sion 1.1 was published as a W3C Note [W3C00b] in May 2000 by Mi-
crosoft, IBM, Lotus, DevelopMentor, and UserLand. After this, SOAP was

71

CHAPTER 3. XML PROTOCOLS

adopted by W3C’s newly formed XML Protocol Activity for standardiza-
tion. This activity, nowadays the XML Protocol Working Group in the
Web Services Activity, has produced a Recommendation of SOAP ver-
sion 1.2 [W3C03d, W3C03e] in June 2003.

3.3.2 Features

We will be concentrating on the features of SOAP version 1.2, since that is
the current version, and the one to which existing Web service platforms
are moving towards.

Header Block

Header Block

Header Body

Envelope

Figure 3.2: The Structure of a SOAP Message

The SOAP message structure is shown in Figure 3.2. A SOAP mes-
sage is an XML document with the root element being Envelope. This
element contains one or two elements, the first of these being an optional
Header and the second one being a mandatory Body. The Header may
contain any number of child elements, called Header Blocks. The SOAP
specification does not address the content of the Body element in any way,
other than requiring it to be well-formed XML and specifying its structure
in the case of errors, so-called SOAP Faults. This leaves it to each appli-
cation to define how the content of the Body element is to be interpreted.

The extensibility of SOAP stems from the fact that the content of the
Header element is very loosely specified. There are practically no re-
quirements on the type or content of individual header blocks. The only
semantics that are defined for header blocks are a few optional attributes
describing the encoding of the block, the intended recipient of the informa-
tion in the block, and an indication of whether the block’s semantics must
be understood by the recipient. This loose specification allows applica-
tion developers to freely define their own header blocks with appropriate
semantics.

72

3.3. PROTOCOLS

SOAP’s extensibility allows it to be used in a wide variety of situations.
There is in fact no necessity for SOAP messages to be responded to: the
specification assumes only a one-way message transfer from the sender
to a receiver. However, as the W3C’s XML Protocol Usage Scenarios doc-
ument [W3C02b] describes, by defining a few header blocks, SOAP can
be used to support such communication patterns as Request-Response,
RPC, Event Notification, and Conversation. In addition, there are provi-
sions for independent intermediaries to be placed on the path between the
initial sender and the ultimate receiver.

SOAP version 1.1 was still practically tied to HTTP as a transfer pro-
tocol. There was no other specified protocol mapping nor was there a
suitable protocol framework to assist in using other protocols. This has
changed in version 1.2, where the HTTP binding was removed to the
Adjuncts section of the specification and replaced in the main part by a
generic protocol binding framework. This framework should make it easier
to use SOAP over non-HTTP transfer protocols, and in fact there already
are implementations of SOAP that support other protocols. In particular,
the XML Protocol Working Group has published a SOAP binding for email
as a W3C Note [W3C02a] to illustrate the usefulness of the binding frame-
work.

There was originally very little SOAP-specific work done on the security
aspects of Web services. For a long time, the only way of having some
security with SOAP was to use Secure Sockets Layer (SSL), as is done
with HTTP. However, the Web services world is much more complex than
the plain Web world and SSL does not address all relevant issues such
as authentication in connection with intermediaries and third parties, or
security after a message has reached its destination.

The security situation has been changing now that people have real-
ized SSL is not sufficient for the needs of SOAP. The W3C is working
on encryption, signatures, and key management in the context of XML,
and has published Recommendations on signing [W3C02d] and encrypt-
ing [W3C02c] XML documents. This work has been used by OASIS to
define a security solution for Web services [OAS04].

3.3.3 Current State

As mentioned above, SOAP is now officially being developed by the W3C.
It is currently a Recommendation, which means that this version should
be stable for some time and that implementations will probably aim for and
advertise version 1.2 compliance.

73

CHAPTER 3. XML PROTOCOLS

The XML Protocol Working Group was originally chartered to be dis-
banded in April 2002. However, this timetable would have required the
Working Group to publish a Candidate Recommendation in April 2001 and
a Recommendation in September 2001. The current charter terminates in
January 2005.

SOAP’s roots in XML-RPC are also somewhat of a hindrance to full
utilization of SOAP’s features. XML-RPC is a RPC protocol over HTTP, as
was SOAP in the beginning. However, the current version of SOAP is nei-
ther RPC- nor HTTP-specific. Even so, people often associate SOAP with
these two concepts and this misconception also causes misunderstand-
ings of the SOAP specification.

3.3.4 Implementations

There are several SOAP toolkits available for various languages. The
most popular in the Open Source world are the SOAP::Lite module for
Perl (http://www.soaplite.com/) and Apache Axis for Java (http://ws.
apache.org/axis/). The kSOAP (http://www.ksoap.org/) toolkit is in-
tended for Java Mobile Information Device Profile (MIDP) devices, and
there is also an official specification for Web services on the Java 2 Micro
Edition (J2ME) platform [Sun04]. Microsoft also includes its own SOAP
toolkit in their .NET development framework (http://msdn.microsoft.
com/netframework/). There are also SOAP bridges so that CORBA or
COM objects can be exposed as Web services.

Interoperability testing of the various implementations is hampered by
the fact that there is no good test suite. Therefore interoperability can only
be expected in common cases and more obscure parts of SOAP probably
do not get much interoperability testing. The XML Protocol Working Group
has published a Recommendation [W3C03f] containing a set of tests for
SOAP implementations.

After the gradual stabilization of the SOAP 1.2 specification, implemen-
tations have been targeting conformance to this version, and most popular
ones advertise themselves as such already. The XML Protocol Working
Group used to keep a partial list of 1.2-conformant implementations and
their statuses, but this list was not kept up-to-date, probably due to the
stabilization of the specification and the improved conformance of imple-
mentations.

74

http://www.soaplite.com/
http://www.soaplite.com/
http://www.soaplite.com/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://www.ksoap.org/
http://www.ksoap.org/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/

3.4. XML OVER WIRELESS

3.4 XML over Wireless

If XML Protocols are intended for use in the services of the future, the
needs of mobile users must be taken into account. Mobile users are typ-
ically behind low-bandwidth high-latency wireless links and the protocols
and data formats originally designed for wired networks may be too heavy
for wireless connections. In addition, devices such as Personal Digital
Assistants (PDAs) and mobile phones typically have weaker processors,
and users would like power usage to be as small as possible to conserve
battery, so processing requirements are also a significant factor.

3.4.1 Problem Areas

There are several problems in trying to use SOAP over a wireless connec-
tion as noted in e.g. [LH03] and [KTR03]. The most obvious of these is that
XML documents tend to be quite large, since the tag names are usually
quite descriptive and XML does not allow certain redundant information to
be left out. Another problem is that the typical underlying transfer proto-
col in SOAP implementations is HTTP according to the standard SOAP
binding, which might not be suitable for typical wireless environments.

XML is also fully text-based, which means that processors need to do
string matching and conversions of integers and floating-point numbers
between text and binary representations. This can be quite costly in terms
of processing power, which is a scarce resource in the context of small
devices.

3.4.2 Transfer Protocols

The only transfer protocol specified by the W3C for SOAP is HTTP, which
is practically always used over TCP. However, TCP is not very well suitable
for wireless links [BPSK97] and HTTP itself is somewhat heavy. Of the im-
plementations, SOAP::Lite for Perl supports several protocols other than
HTTP including FTP, raw TCP, and Jabber, an instant messaging protocol.
Most implementations have a protocol framework of some form, which is
supposed to make switching from one transfer protocol to another easy.

An application protocol framework called Blocks Extensible Exchange
Protocol (BEEP) was published by the IETF in March 2001 as a Request
for Comments (RFC) [Ros01a]. BEEP is a peer-to-peer protocol that sup-
ports connection sharing between logically separate sessions. Implemen-
tations of BEEP (http://www.beepcore.org/beepcore/projects.jsp) al-

75

http://www.beepcore.org/beepcore/projects.jsp
http://www.beepcore.org/beepcore/projects.jsp
http://www.beepcore.org/beepcore/projects.jsp

CHAPTER 3. XML PROTOCOLS

ready exist for Java, C, and some other languages. In some circles, a
suitable BEEP-based protocol is seen as a possible replacement for HTTP.

A standardized SOAP binding for BEEP has been published by the
IETF as a RFC [OR02], but there are still no implementations, and very
little interest in this. There was also interest in mapping BEEP on top
of Stream Control Transmission Protocol (SCTP), which is expected to
be a popular transport-layer protocol in wireless environments, but this
interest seems to have faded, and no specifications or implementations
are available.

3.4.3 Compression

Compression of XML documents sent over the network would seem to be
the method that gives the largest payoffs. There are three different ways
to approach compression: non-XML-specific methods, methods taking ad-
vantage of XML’s inherent structuring, and binary XML, a subset of the
previous one that preserves the document structure even in compressed
form.

Generic Compression

Generic compression algorithms can naturally be used also for XML doc-
uments. They are to be expected to perform well due to XML documents
being text and the element parts being highly repetitive.

Generic compression is already publicly available in SOAP implemen-
tations. For example, the SOAP::Lite module for Perl implements trans-
parent deflate compression using the zlib compression library (http://
www.gzip.org/zlib/). In addition, the Apache web server has an ex-
tension module (not SOAP-specific) for zlib compression of served doc-
uments. It is in fact common these days for Web browsers and servers to
support compression of documents sent with HTTP.

Typical compression algorithms achieve good compression ratios by
exploiting redundancy in the data. From this it follows that they perform
better on larger documents. While XML in general might be used for even
very large data collections, individual SOAP messages are often quite
small, typically a few kilobytes at most. Therefore the compressor may
perform badly, possibly leaving the compressed size to over 50% of the
original size [GS00, KTR03].

76

http://www.gzip.org/zlib/
http://www.gzip.org/zlib/
http://www.gzip.org/zlib/

3.4. XML OVER WIRELESS

XML Compression Methods

Since XML is as popular as it is, it is to be expected that XML-specific
efforts are also made, in compression as in other fields. XML-specific
compressors typically exploit the additional structure present in the data.
Usually these compressors can also exploit DTDs and XML Schema defi-
nitions of the document structure to achieve even better compression.

Some high-performance XML-specific compressors are XMill (http:
//www.research.att.com/sw/tools/xmill/), XMLPPM (http://www.cs.
cornell.edu/People/jcheney/xmlppm/xmlppm.html) and XMLZip. None
of these are in very active development, and XMLZip is not even available
any more. All of them achieve very high compression ratios, but mostly
for larger documents, and they all use methods for generic compression,
which makes their processing time requirements quite large.

A specific type of XML-specific compression is binary XML, which is
different enough to merit separate treatment. In binary XML tags are re-
placed by binary tokens, reducing each tag to one or two bytes. Standard
attributes of elements can also be tokenized in this way. The benefits of
using a binary encoding also manifest themselves even on shorter mes-
sages, like those used in SOAP. In addition, it is also possible to compress
the content of elements independently of the tag compression.

Another benefit of this tokenization is that the document can be parsed
directly from the compressed form without having to uncompress first,
since the original structure remains intact; only the tags are changed. It
is also possible for the message sender to generate binary XML directly.
These could be beneficial since handling strings, which regular XML re-
quires, is more time-consuming than handling pure binary data.

The best-known and oldest format of binary XML is WAP Binary XML
(WBXML). This was published by the WAP Forum [W3C99b] for the needs
of Wireless Application Protocol (WAP), which needs to be suitable for
small devices with wireless connections. In WBXML the tokens are di-
vided into code spaces and during encoding/decoding there is a default
code space at each point in processing. The Millau [GS00] work expands
upon WBXML with some enhancements of the format and performance
measurements.

Binary XML is starting to become a more mainstream concept than it
was a few years ago. The W3C hosted a Workshop on Binary Interchange
of XML Information Item Sets1, the purpose of which was to determine
whether it is feasible for the W3C to start standardization work on binary

1http://www.w3.org/2003/08/binary-interchange-workshop/Report

77

http://www.research.att.com/sw/tools/xmill/
http://www.research.att.com/sw/tools/xmill/
http://www.research.att.com/sw/tools/xmill/
http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html
http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html
http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html
http://www.w3.org/2003/08/binary-interchange-workshop/Report
http://www.w3.org/2003/08/binary-interchange-workshop/Report
http://www.w3.org/2003/08/binary-interchange-workshop/Report

CHAPTER 3. XML PROTOCOLS

XML formats. As a result of this workshop, the W3C formed the XML Bi-
nary Characterization Working Group (http://www.w3.org/XML/Binary/),
the task of which is to gather information on situations where the overhead
of XML is unacceptable, and to provide guidelines on determining whether
alternate serialization formats are usable. The Working Group has pub-
lished a Working Draft of a Use Cases document [W3C04d], which iden-
tifies use cases where XML deployment is currently problematic for some
reason.

Currently several different binary formats for XML data are avail-
able. Apart from WBXML, which is e.g. supported by the kSOAP toolkit,
newer ones are BiM (http://www.computer.org/proceedings/dcc/1477/
14770467.pdf) used in MPEG-7 [AS01b], the XBIS Encoding (http://
xbis.sourceforge.net/) supporting XML Infoset [W3C04k], and Cubew-
erks CWXML (http://www.cubewerx.com/main/cwxml/), a new Applica-
tion Programming Interface (API) for XML with support for binary encod-
ings.

There is also other recent work in the area of Web service optimization.
Sun Microsystems (http://www.sun.com/) has gone the furthest in this
direction with Fast Web services [SPGK+03], which maps the XML infoset
of a SOAP message to Abstract Syntax Notation One (ASN.1) (http://
asn1.elibel.tm.fr/). This technology is going through the process of
ITU-T (http://www.itu.int/) standardization.

3.5 Conclusions

Judging from industry support, the deployment of Web services is about to
increase quickly in the near future. With increasingly more sophisticated
and powerful mobile devices coming to market, the number of users in
wireless environments wanting to use these services seems likely to also
grow rapidly. Reconciling the protocol overhead of Web services with the
still quite limited data transfer capabilities of wireless devices is therefore
very important.

One option would of course be to do nothing and accept the overhead
of Web services as a natural part of communication, even in the wireless
world. This attitude reputedly works for some people. The obvious benefit
would be that there would be no need to implement a separate solution for
wireless devices. Instead, any Web service implementation would suffice
for both the wireless and the wired worlds. This option should be kept in
mind as a baseline due to its simplicity, but tests should be done comparing
it to various proposed improvements.

78

http://www.w3.org/XML/Binary/
http://www.w3.org/XML/Binary/
http://www.w3.org/XML/Binary/
http://www.computer.org/proceedings/dcc/1477/14770467.pdf
http://www.computer.org/proceedings/dcc/1477/14770467.pdf
http://www.computer.org/proceedings/dcc/1477/14770467.pdf
http://xbis.sourceforge.net/
http://xbis.sourceforge.net/
http://xbis.sourceforge.net/
http://www.cubewerx.com/main/cwxml/
http://www.cubewerx.com/main/cwxml/
http://www.cubewerx.com/main/cwxml/
http://www.sun.com/
http://www.sun.com/
http://asn1.elibel.tm.fr/
http://asn1.elibel.tm.fr/
http://asn1.elibel.tm.fr/
http://www.itu.int/
http://www.itu.int/

3.5. CONCLUSIONS

Switching to another transfer and lower layer protocols could be used
with ordinary SOAP intermediaries that understand the transfer protocols.
There would in this case be no need to touch the messages except in-
sofar as SOAP intermediaries normally do while processing a message.
The wisest course here would be to identify solutions that are expected
to become popular, so that there would be fewer problems with support.
Currently there seem to be no real alternatives to sending XML over HTTP.

Generic XML compression schemes should also be ignored as they
typically perform worse than more generic compression on SOAP mes-
sages. Here the deflate compression method, which is expected to be
supported quite widely, should be kept as a baseline, and proposed other
schemes compared with it. Some form of binary XML would seem like a
better alternative and, with the current interest in it, will probably feature in
the future of Web services in the mobile Internet.

79

CHAPTER 3. XML PROTOCOLS

80

Chapter 4

Synchronization

4.1 Introduction

In this section we review work relevant to the Mobile Distributed Informa-
tion Base (MDIB) work package of the project. We focus on the data syn-
chronization aspects of storage systems suited for XML storage with char-
acteristics such as high availability, consistency, and support for weakly
connected and disconnected operation.

We use the definition of data synchronization given in [BP98]. Accord-
ing to the definition, data synchronization consists of the following sub-
tasks:

Update detection determining which objects in a collection have been
changed and need to be synchronized.

Update propagation the method by which updates are propagated be-
tween the locations that are synchronizing.

Reconciliation the synchronization logic that deals with the possible oc-
currence of concurrent data modifications.

In the reviewed work, synchronization is usually not the main research
topic. Typically the research concentrates on something that entails syn-
chronization as an integral part, such as a distributed file system or a
shared database. The only work that specifically deals with synchroniza-
tion as reviewed here is the SyncML synchronization protocol.

Although it would be interesting to review work that concentrates on
synchronization, it is certainly beneficial to view it as an integral part of a
system, as the described synchronization methods in these cases solve

81

CHAPTER 4. SYNCHRONIZATION

an actual synchronization problem. The holistic perspective also helps to
recognize different aspects of the synchronization process, such as

• Policies regarding when, what, and how to synchronize.

• Conflict resolution mechanism, including conflict resolution policies.

• Low-level network transportation method (e.g. FTP, SSL).

• Caching and maintaining cache coherency.

• Consistency guarantees for synchronized data.

• Locking and session semantics.

• Methods for gathering and transporting updates (e.g. change log,
deltas).

Throughout this document, we have tried to describe these aspects, to
the extent they are applicable, for each of the reviewed systems.

The review focuses on the synchronization mechanisms in distributed
storage systems and how suitable these are for operation in a mobile en-
vironment. Particular points of interest on synchronization from a mobile
perspective are

• Are unexpected disconnections handled well?

• Does the protocol save bandwidth?

• Is the architecture suitable for peer-to-peer1 operation?

• Is the protocol or architecture too complex for mobile devices?

• Is the architecture secure?

The distributed storage systems we review here are Coda, Bayou,
OceanStore, and InterMezzo. Coda and InterMezzo are distributed file
systems, whereas OceanStore is a highly available and fault tolerant data
storage facility designed to be deployed on a global scale. Bayou is a
distributed database, designed from the ground up with disconnections in
mind.

We are also interested in how easily these systems could be utilized in
the Fuego Core project. We have tried to evaluate each system from this
aspect as well, by looking at such issues as

1In this chapter, peer-to-peer operation is assumed to mean end-to-end communica-
tion between IP-enabled devices without the need for supporting server infrastructure

82

4.2. CODA

• Is the system documented well?

• What is the API provided to application developers?

• What is the status of the implementation?

• Is there any source code available?

In addition to storage systems, we review the SyncML synchronization
protocol as an example of a synchronization protocol that is not tied to a
particular application and is supported by a range of mobile devices.

Furthermore, we present key-based routing briefly in section 4.5, inves-
tigate synchronization policies in section 4.8 and the reconciliation aspect
of synchronization in section 4.9. The use of different encoding methods
to minimize bandwidth usage is presented in section 4.10, which focuses
on the use of delta encoding. We present our conclusions in section 4.11.

4.2 Coda

The Coda file system (http://www.coda.cs.cmu.edu) [BBHS00, SK92,
MES95, Sat96, Bra98, S+90], originating at Carnegie Mellon University
and building on the heritage of the famous Andrew File System, is perhaps
the best-known file system with support for weakly connected and discon-
nected operation. Since its initial development during the years 1990–
91, and subsequent enhancement for weak connectivity in 1993–95 it has
been extensively studied and refined. As research software Coda is quite
mature. Current development concentrates on allowing Coda to be widely
deployed.

The features of main interest in Coda are

• Support for disconnected operation

• Support for weakly connected1 operation with adaptation to available
bandwidth

• Free and relatively mature source code available

• Support for write access to shared file systems in disconnected mode

• Ability to ensure the availability of important files during disconnected
operation

1High-latency, low-bandwidth (typically 9.6–64kbps) connections with occasional in-
voluntary disconnections, typically wireless links.

83

http://www.coda.cs.cmu.edu
http://www.coda.cs.cmu.edu

CHAPTER 4. SYNCHRONIZATION

• Client and server software are available on several platforms.

• Excellent compatibility with legacy applications

In addition, Coda supports replicated file servers for higher performance
and fault tolerance, server recovery, and client authentication and access
control using a Kerberos-like scheme combined with access control lists.

The architecture of Coda follows the client/server paradigm. The de-
sign is optimized for access patterns exhibiting few or no concurrent writes
to the same objects. On the server side, Coda stores files using its own
scheme, meaning that you cannot just “start sharing” an existing file sys-
tem.

Coda exhibits a hierarchical architecture. At the highest level of orga-
nization, there is the Coda cell. The clients and servers in a cell share
the same common namespace and configuration information. Each cell
has a server designated as the System Control Machine (SCM), which
is responsible for maintaining the configuration databases. Movement of
clients between cells is currently not possible, so a cell would typically
contain the entire shared file tree of an organization.

The Coda namespace, which appears as a directory hierarchy under
a mount point (typically /coda) is populated by volumes. Volumes are
subtrees of a server directory hierarchy, typically larger than a single di-
rectory but smaller than an entire partition. For instance, a home direc-
tory /home/ctl on server A could be exported to the Coda namespace as
/coda/home/ctl. A volume may be exported inside the directory structure
of another volume.

Volumes may be replicated across several servers for fault tolerance.
The group of servers replicating a volume is called a Volume Storage
Group (VSG), and the group of servers in the VSG available to a client
at a given instant is referred to as the client’s Active VSG (AVSG).

Security in Coda was designed on the basis that servers are trusted,
whereas clients are not. For authentication and authorization during a
session, Coda clients use a token obtained from a server in exchange for
the correct password. Permissions are granted based on looking up the
user who owns the token in the system’s Access Control List (ACL).

4.2.1 Storage and Update Model

In this section, the operation of the Coda client and server is described
first, after which the interaction between a client and a server is examined.

84

4.2. CODA

Server-to-server communication is not described in detail, as our main
interest lies in the mobile aspects of Coda.

On the client side, Coda makes aggressive use of caching, not only to
improve performance but mainly to make files available in states of weak
connection or disconnection. The Coda client, consisting of a relatively
small kernel-level module and the cache manager Venus, has three main
responsibilities:

• Managing the cache: checking currency of files in the cache, fetching
files, and making sure that the files the user has selected for off-line
availability are in the cache.

• Propagating changes from the client to the server. Changes include
modifications to files, directories, and permissions.

• Maintaining a log of changes to the file system when changes cannot
be propagated immediately. This log is called the client modification
log (CML).

The server part of Coda, called Vice, performs the following tasks:

• Manages server storage. File data is stored on the file system pro-
vided by the OS. Coda metadata, such as volume and directory in-
formation, is stored in a transaction-enabled raw partition to provide
fault tolerance.1

• Grants and executes callbacks (in Coda terminology “breaks”) to
clients when an object is modified.

• Applies CMLs received from clients.

• Performs conflict detection and resolution.

• Handles server-to-server replication; initiated by clients when they
detect stale data on a server.

Coda uses session semantics for shared files. The session starts when
a file is opened and ends when the file is closed. Coda treats files as
atomic objects, meaning that concurrent modifications at different loca-
tions in a file will result in conflicts. Consistency and recoverability of
Coda metadata is provided through the use of the recoverable virtual mem-
ory (RVM) [MS91] transaction handling module.

1Replaced by a binary file on Windows.

85

CHAPTER 4. SYNCHRONIZATION

Hoarding, Emulating, and Write-disconnected

The interaction between Venus and Vice takes place in three states: hoard-
ing, emulating, and write-disconnected (this state was called the reinte-
grating state before support for weak connectivity was added). These
states correspond to being connected to a fast network (hoarding), discon-
necting and working on the road (emulating) with occasional weak connec-
tivity (write-disconnected) and finally returning back to the home network
(hoarding). The states and possible transitions are depicted in Figure 4.1.

Hoarding

Emulating Write-
disconnected

D
isc

on
ne

ct
io

n Strong

connection

W
eak

connection

Disconnection

Connection

Figure 4.1: Venus states and state transitions.

In the hoarding state client changes to directories, files, and permis-
sions are immediately propagated to all servers in the AVSG (replication
is thus primarily handled by clients sending their updates to all servers in
the VSG) in addition to the locally cached copies. Each client chooses1

a primary server in the VSG, from which it fetches current objects and
receives callback notifications (“breaks”) when objects on the server are
updated. The callback notifications are thus used to mark cached objects
invalid. A client alerts the primary server to initiate server-to-server repli-
cation if it detects that any of the members in the AVSG has an old version
of an object. Object currency is detected through the use of version vec-
tors [P+83].

1Selection techniques include random selection or selection based on server load.

86

4.2. CODA

When Venus detects that the client has been disconnected from the
network, it enters the emulating state. Ideally, the application user is not
affected at all by the disconnection, as Venus tries to emulate connected
operation in this state (hence the name of the state). The ability to continue
using the file system as if nothing had happened during disconnection is a
feature pioneered by Coda.

In disconnected operation we can no longer be assured that the objects
in cache are up-to-date, and the penalties for a cache miss are fatal — the
file cannot be accessed at all. To prevent vital files from being absent
from the cache, the user is able to specify a list of files, called the hoard
database, that should always stay in the cache (so-called “sticky” entries)1.
As the modifications to the client cannot be propagated they are stored in
the CML, which is replayed on the servers in the AVSG once the client has
reconnected. As in the hoarding state, modifications are still applied to
cached entries immediately. To save resources (and bandwidth at recon-
nection) the CML is subjected to optimizations, e.g. entries describing the
creation, writing, and subsequent deletion of an object (the life cycle of a
temporary file) are purged from the CML.

When the client has reconnected to the network (either over a weak or
strong link), Venus enters the write-disconnected state, and the process of
reintegrating the changes between the server and client starts. As modifi-
cations may have occurred on the server side, the cached entries on the
client may be stale. Furthermore, to propagate the modifications local to
the client the CML needs to be sent to the AVSG.

As the connection may be weak, bandwidth usage during reconnec-
tion must be considered. Overlooking this fact made early incarnations
of Coda unbearably slow when reconnecting over a weak link. Fortu-
nately, with the introduction of rapid cache validation, trickle reintegration,
and user-assisted miss handling, performance over weak connections im-
proved enormously. These techniques are described below.

To minimize cache validation traffic, version stamps for volumes as well
as individual files are maintained. Version stamps for volumes enable val-
idation of a large amount of files in a single sweep, provided no modifica-
tions have occurred to the volume, as is frequently the case. Using volume
version stamps enables rapid cache validation.

Trickle reintegration is a process whereby the client continues to gen-
erate updates to the CML instead of sending them directly to the AVSG,
even though the device is connected. The CML is allowed to age for some

1Files from the hoard database can still be evicted from the cache, if space is insuffi-
cient.

87

CHAPTER 4. SYNCHRONIZATION

time, enabling optimizations to be done before it is sent to the AVSG. For
instance, if the CML is allowed to age 10 minutes before being transmit-
ted, a file create/delete pair 9 minutes apart can be optimized away. To
increase responsiveness, an upper bound is set on the size of the trans-
mitted CML chunks. The tradeoff of trickle reintegration versus hoarding is
weaker consistency.

As opposed to fully disconnected operation, cache misses can be han-
dled in the write-disconnected state. In case of a low-bandwidth connec-
tion, the delay experienced by the user when fetching large objects may,
however, be prohibitive (a cache miss for a 1 MB file on a 9.6kbps link will
cause a delay of some 20 minutes). User-assisted miss handling means
that in cases where huge transfer times would result, Coda will query the
user before initiating the transfer.

Reintegration and Conflict Handling

Reintegration, which takes place constantly in the write-disconnected state
and when entering the hoarding state, reconciles the differences between
a client and the servers. Reintegration consists of the following steps:

1. Venus makes final allocation of resources tentatively obtained from
the server.

2. The CML is transmitted to the AVSG, which executes the CML oper-
ations, checking for conflicts at the same time. Some conflicts can
be solved automatically (such as adding of files to the same direc-
tory), but not all: for instance, if a file has been modified on the server
since disconnection as well as on the disconnected client, the conflict
cannot be automatically solved. In such cases, it is possible to have
Coda invoke application-specific resolvers to handle the conflict.

3. Updated files are fetched from the client.

If the CML causes a conflict, the log is rejected and the corresponding
entries flushed from the client cache. In this case the user must resolve
the conflicts manually.

4.2.2 Coda as an Mobile Distributed Information Base
(MDIB)

When it comes to support for mobility, Coda is well thought out. There is
support for weakly connected operation, including unexpected and spuri-

88

4.3. INTERMEZZO

ous disconnections. The weaknesses of Coda lie in the requirements not
specifically related to mobility: it is not designed to scale to a global level,
since there are no guarantees for strong consistency (ACID) or support for
transactions.

It should also be noted that the design of Coda, especially the authen-
tication and authorization system, is based on the client/server model. An
interesting question is if Coda could be extended to support operation in
peer-to-peer mode.

4.2.3 Practical Issues

The sources for Coda are publicly available, and the system has reached
a high level of maturity for research software. The semantics are easy
to understand, lots of documentation is available, and the storage API is
familiar to Unix programmers. In short, Coda should provide an excellent
platform for experimentation.

On the downside, Coda uses its own partition format on the server side
and requires a fair amount of configuring to work, raising the threshold for
spontaneous experimentation and deployment.

4.3 InterMezzo

InterMezzo (http://www.inter-mezzo.org) [BN99, Bra02] is a newcomer
to the family of distributed file systems with support for disconnected oper-
ation. The goal of the InterMezzo project is to achieve the same benefits
as Coda as well as performance close to a local file system, but with a
simpler architecture.

The architecture of InterMezzo was heavily inspired by that of Coda
and several researchers have been involved in both projects. Like Coda,
InterMezzo makes use of aggressive caching and has session semantics
based on file open and close. The update propagation scheme is simi-
lar to that of Coda’s weakly connected operation. The main differences
are that InterMezzo utilizes the underlying file system to a higher degree
(no special partition required on the server) and that many performance
optimizations unrelated to networking have been performed, such as mov-
ing code to kernel space and introducing asynchronous calls between the
InterMezzo modules.

89

http://www.inter-mezzo.org
http://www.inter-mezzo.org

CHAPTER 4. SYNCHRONIZATION

InterMezzo consists of two modules:

1. The kernel file system code, called Presto, which gathers a log of
modifications to the file system. This log is called the kernel modifi-
cation log (KML).

2. The cache manager, which is responsible for keeping the cache up-
dated and for sending the KML to the system’s peer.

The cache manager originally consisted of a single program called
Lento. Lento, which can still be used, has since been superseded by
a HTTP-based approach consisting of a generic web server (such as
Apache) and a program called InterSync. In the following discussion, we
will assume that InterSync (with an HTTP server) is used. Lento essen-
tially does the same as InterSync combined with a web server; the dif-
ferences are mainly in how communication is initiated. The use of a web
server for communications automatically adds support for proxies and se-
cure transfers to InterSync.

4.3.1 Storage and Update Model

InterMezzo is a filtering file system [HP94] that sits on top of an existing
journaling file system capable of supporting nested transactions, such as
Linux’s ext3 and ReiserFS. The underlying file system stores files in the
same directory hierarchy and with the same names as those seen in In-
terMezzo. Some additional special files and directories are also added for
control purposes. InterMezzo relies on the journaling abilities of the un-
derlying file system to handle recovery and guarantee consistency. The
advantage of this design is that it leverages the performance and trans-
action handling capabilities of an existing file system (unlike Coda which
uses its own transaction handling system, the RVM).

InterMezzo can be set up for both one- and two-way synchronization. In
the former case, changes are only propagated from the server to the client.
In this case it is sufficient for the client to use InterSync without having an
InterMezzo partition, since no modification log needs to be captured on
the client.

In the case of two-way synchronization, changes need to be tracked on
the client as well, and thus the shared files must reside on an InterMezzo
partition. Two-way synchronization can be performed in two different ways:
one is to use a web server on the server side only, in which case the client
KML is pushed to the web server, the other is to have web servers on both
the client and the server. In the latter case, depicted in Figure 4.2, the

90

4.3. INTERMEZZO

client and server operate symmetrically. We will examine this case more
closely.

HTTP Server InterSync

Kernel

Kernel

InterSync HTTP Server

H
T

T
P

 (
p

o
ss

ib
ly

 t
un

ne
le

d
) H

T
T

P
 (po

ss
ibly tun

n
eled

)

ioctls

ioctls

upcalls

upcalls

Figure 4.2: Symmetric two-way synchronization operation in Inter-
Mezzo [Bra02].

Modifications on the server side are propagated to the client by having
InterSync fetch the KML (through a normal HTTP file request) regularly
from the server. InterSync then processes the KML, fetching the corre-
sponding file from the server whenever a file modification record is en-
countered. Modifications on the client are propagated similarly by having
the server download the KML of the client.

As an alternative to polling the KML, synchronization may also be initi-
ated by a message from the server whenever modifications occur. Further-
more, InterSync can be configured to only fetch the modified files when
they are actually accessed on the client. Some optimizations are done
when processing the KML, such as not fetching temporary files and avoid-
ing to fetch the same file multiple times.

The scheme described above raises the question of how a server han-
dles the KML when synchronizing to several clients (with different times of
previous synchronization). The answer is that the server stores the last
successfully retrieved record of the KML for each client and only sends
more recent records of the KML to the corresponding client. Unbounded
growth of the KML is prevented by having it periodically truncated. To be
able to restore a heavily out-of-date client, InterMezzo maintains another
log, the synchronization modification log (SML), which only contains object
creation records.

Presumably, one can use server-granted write permits (callbacks), such
as those used in Coda, to guarantee a higher degree of consistency. We
were not able to find detailed descriptions of the permit handling.

91

CHAPTER 4. SYNCHRONIZATION

Conflict detection is handled by checking the KMLs for conflicting oper-
ations. Assume that the KMLs gathered since the point of synchronization
of directory trees are L1 on the client and L2 on the server. The client re-
ceives L2 in order to perform reintegration. We need to check for possible
conflicts between the logs L1 and L2, such as modifications to the same
file.

Conflicts are automatically resolved according to a given policy by gen-
erating new logs Llocal

1 , Llocal
2 and Lremote

1 , so that Llocal
1 Llocal

2 , when applied
on the client, yields the same result as applying L2L

remote
1 on the server

(Lremote
1 is the KML sent to the server). The following policies are men-

tioned:

Mobile policy and High-availability policy The conflicting object is kept
on the client. When a conflicting server object is detected, the client
object is moved away to another location.

Re-synchronization policy Used for heavily out-of-date systems, which
need to apply the synchronization modification log (SML).

The details of generating Llocal
1 , Llocal

2 and Lremote
1 can to some extent be

found in [Bra02]. The need for Llocal
2 and a Llocal

1 differing from Lremote
1 arise

due to the fact that conflict resolution mechanism may require different
operations to take place on the server and client.

4.3.2 InterMezzo as an MDIB

InterMezzo implements basic support for disconnected operation, and can
thus operate in a mobile environment. However, there is no explicit sup-
port for weakly connected operation as there is in Coda. Noting the large
improvement in performance that was achieved in Coda by accounting for
weak connections, one suspects that InterMezzo could be improved as
well. Techniques that come to mind are protocol optimization and delta
transfers.

InterMezzo was designed for simplicity, which should be advantageous
in mobile environments. Especially the layered file system design and
KML gathering seem efficient and elegant, provided that an underlying
journaling file system is available. On Linux-based platforms, this should
not be a problem; there is even a journaling file system for flash devices
available: JFFS2 [Woo01].

High availability and scalability have been considered to some extent,
but cannot be compared to the massive approaches taken in e.g. Ocean-
Store (see section 4.6).

92

4.4. BAYOU

Although the basic design of InterMezzo is client/server, it exhibits a
great deal of symmetry between these. This speaks for easy adaption to
peer-to-peer operation. Compared to Coda, the ability to use InterMezzo
“on top” of an existing file system is a clear advantage: one is not forced
to set up new partitions and the risk of data loss due to a file system bug
appears to be considerably smaller.

4.3.3 Practical Issues

Sources and documentation for the InterMezzo project are available from
the project web site as well as SourceForge (http://sourceforge.net/
projects/intermezzo), where open-source development of the file sys-
tem takes place. There is some testimony that InterMezzo has reached a
level of maturity where it can be used on a day-to-day basis [vH02]. The
sharing semantics are familiar from Coda and the API is the standard Unix
file API.

On the downside, we note that there are only a few documents on Inter-
Mezzo available. The best way to learn the details of InterMezzo appears
to be to read the source code. The use of kernel code will make deploying
on platforms other than Linux harder.

As for security, InterMezzo leverages standard Unix and HTTP mech-
anisms for handling authorization and authentication. The choice not to
build a security mechanism of its own should help keep down the number
of security-related bugs.

Project development activity seems to have declined1during 2003. The
latest official release is still 1.0beta1, released in November 2000, and
there have been no new documentation or announcements of new devel-
opments.

4.4 Bayou

The Bayou (http://www.parc.xerox.com/csl/projects/bayou) [TD+94,
E+97, PST+97] storage system was designed with collaboration of fre-
quently disconnected users in mind. In Bayou, the database used by a
collaborative application is aggressively replicated to provide high avail-
ability. To facilitate work in off-line mode Bayou abandons the requirement

12002: CVS commits 520, mailing list posts 157 (devel), 339 (discuss], 4 (announce)
2003: CVS commits 18, mailing lists posts 91 (devel), 275 (discuss], 1 (announce).

93

http://sourceforge.net/projects/intermezzo
http://sourceforge.net/projects/intermezzo
http://sourceforge.net/projects/intermezzo
http://www.parc.xerox.com/csl/projects/bayou
http://www.parc.xerox.com/csl/projects/bayou

CHAPTER 4. SYNCHRONIZATION

for strong consistency among replicas and instead introduces a number of
different guarantees for weakly consistent operation.

New data may be written to any available replica. From there changes
will eventually propagate to all replicas by means of the update propaga-
tion mechanism, which in Bayou is anti-entropy. A very interesting idea in
Bayou is the bundling of write checks and merge procedures with database
updates.

Other important features of Bayou are

• use of committed and tentative data (as in OceanStore),

• different session guarantees for weakly consistent data,

• building on the relational database model, and

• probable suitability for peer-to-peer operation due to the anti-entropy
update mechanism and easy replica insertion and deletion.

The project was carried out during the years 1993–97 at the famous Xe-
rox Palo Alto Research Center (PARC). During the course of the research
project several collaborative applications were built on top of Bayou, in-
cluding a group calendar and an email application.

4.4.1 Storage and Update Model

A write in Bayou terminology is a procedure that generates a set of up-
dates to be applied to the database. A write may for instance delete a row
in a relational table. The storage system at each replica consists of a log
of writes and the database that results from applying these writes in order.
In theory, the write log on each server contains all writes to the database,
received either from clients or other replicas (in practice, writes that have
been committed can be discarded from the write log). The task of the up-
date mechanism is to reach an eventual agreement among all the servers
on the set of writes in the log, as well as the order of the writes.

When a server receives and accepts a client write it assigns the write
an accept stamp, and associates the server ID with the accept stamp. The
accept stamps are assigned in a monotonically increasing fashion, and
they define an ordering for all the client writes received by a specific server:
if write A is accepted before write B, A will precede B in the ordering. This
ordering is called the accept ordering. The accept ordering is maintained
in the write log.

94

4.4. BAYOU

When receiving a write from another server, the write already has an
accept stamp, which is left unmodified. Each server stores the last re-
ceived accept stamp in a version vector, indexed by the server that as-
signed the accept stamp. For instance, if the version vector on a server S
were {S : 1000, S1 : 2002, S2 : 3003}, it would mean that the accept stamp
of the latest client write on S was 1000, and that S has so far received client
writes of S1 up to accept stamp of 2002, and client writes of S2 up to 3003.

Using these concepts, we can present the basic operation of the anti-
entropy update propagation mechanism. Write operations are propagated
between pairs of servers. A server S propagates the writes it has received
by contacting a randomly chosen replica R, and asks R for its version
vector V . S then iterates through its write log, sending any write from a
server s with an accept stamp a to R if V [s] < a. That is, S only sends
writes to R that R has not seen previously. The pseudo code for basic
anti-entropy is shown in Figure 4.3.

anti-entropy(S,R) {
Get R.V from receiving server R
now send all the writes unknown to R
w = first write in S.write-log
WHILE (w) DO

IF R.V(w.server-id) < w.accept-stamp THEN
w is new for R
SendWrite(R, w)

w = next write in S.write-log
END

}

Figure 4.3: Basic anti-entropy executed at server S to update receiving
server R [PST+97].

Using this scheme, all writes will eventually reach all replicas, accord-
ing to the theory of epidemics. Also note that the accept ordering allows
compact representation, in the form of version vectors, of all the set of
writes seen by a server.

In practice Bayou exhibits some modifications to the basic anti-entropy
scheme:

• Writes are divided into committed and tentative writes. One database
replica is designated to be the primary replica and it determines a to-
tal ordering of writes by assigning monotonically increasing commit
sequence numbers (CSNs) to all the writes it receives.

95

CHAPTER 4. SYNCHRONIZATION

On all servers, the writes that have been assigned a CSN are com-
mitted. The committed writes are ordered before any write without a
CSN in the write log. Writes without CSNs are tentative writes.

To accommodate for this modification, each server R maintains a
counter of the highest CSN assigned to a write. During anti-entropy,
the sender S checks if it has a higher CSN, and in that case sends
the CSNs of all writes between R.CSN and S.CSN to R, along with
any writes unseen by R. R.CSN is then updated to S.CSN .

• The introduction of committed writes allows Bayou servers to trun-
cate the write log. Any write with a CSN may be removed from
the write log, as it is known that its position in the log will no longer
change and hence its effect on the content of the database has been
determined. The tradeoff is that if anti-entropy needs to be performed
with a server beyond the log truncation point, the entire database
needs to be transmitted.

• Anti-entropy can be performed through transportable media. The
update log from a given starting point can be easily exported, e.g. to
a CD-ROM and played back on a number of replicas. The receiving
replicas just ignore any updates they have seen before.

• Writes are causally ordered. To provide the session guarantees pre-
sented later on, a causal write order is introduced, which allows de-
termination whether, at the time of write B to a server S, another
write A was known to S. This can be implemented with a modifica-
tion to accept stamp assignment that still preserves the condition of
monotonic increase.

• Server creation and retirement are light-weight operations. Bayou
uses special writes (that propagate as normal writes through anti-
entropy) to indicate server creation and retirement. To accommodate
for this, each server needs to support version vectors whose size can
be dynamically adjusted.

The write operations in Bayou were designed to be very flexible to ac-
count for the loss of strong consistency. Each write operation has three
parts: a dependency check, an update set, and a merge procedure.

The update set consists of updates, insertions, and deletions to the
database. The dependency check specifies the conditions that must hold
in order to apply the update set to the replica. It consists of a generic struc-
tured query language (SQL) query and the expected result of the query.

96

4.4. BAYOU

A write passes the dependency check if the query returns the expected
result when executed on the replica. The dependency check is thus used
to detect conflict situations.

If the dependency check fails, the merge procedure part of the write
is executed. The purpose of the merge procedure is to provide alternate
courses of action when the update set could not be applied. In other words,
the merge procedure can be used to handle conflict resolution, but it may
also defer it, e.g. by writing the offending record to an error log.

As an example, consider the write to a group calendar in Figure 4.4.
The update set of the write tries to reserve the conference room for Kevin

Bayou_Write(
update = {insert, Meetings, 12/18/95, 10:00am, 60min, "Project Meeting: Kevin"},
dependency_check = {

query = "SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am",

expected_result = EMPTY},
mergeproc = {

alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {

check if there would be a conflict
IF (NOT EMPTY (

SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;

no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, "Project Meeting: Kevin"};
BREAK;

}
IF (newupdate = {}) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, "Project Meeting: Kevin"};
RETURN newupdate;}

)

Figure 4.4: A Bayou write for a group calendar [E+97].

from 10 to 11am on December 18th. The dependency check of this write is
to verify that the conference room is indeed empty at this time. The merge
procedure tries to reserve the conference room at an alternate time and if
that fails, it notifies Kevin by inserting the failed reservation in an error log.

[E+97] and [TD+94] present a number of session guarantees for weakly
consistent replicated data, implemented in the Bayou project. These are

Read Your Writes ensures that reads within a session see any previous
writes within that session. Without the RYW guarantee, a deleted
message could reappear during a mail reading session.

Monotonic Reads guarantees that successive reads will see an increas-
ingly current view of the database. That is, if an application has seen
the effects of a set W of writes, the set of writes seen by subsequent
reads, W1, is guaranteed to be larger than W : W1 ⊇ W . Without the

97

CHAPTER 4. SYNCHRONIZATION

monotonic reads guarantee, you might see a document in a directory
listing, but get a “document does not exist” error when opening it.

Writes Follow Reads makes sure that traditional write/read dependen-
cies are preserved in the ordering of writes at all servers (i.e the
guarantee holds across sessions). WFR entails constraints on write
operations with respect to ordering and propagation; if one of these
is relaxed we get the WFR Ordering and WFR Propagation guaran-
tees. Without the WFR guarantee, you could see responses to an
article in a newsgroup before seeing the original article.

Monotonic Writes states that within a session writes must follow previous
writes. As an example need for monotonic writes, consider storing
a library and subsequently the application that uses it in a Bayou
database. Without monotonic writes, you might see the application,
but not the library.

4.4.2 Bayou as an MDIB: Practical Issues

Bayou was designed with disconnected operation in mind, and hence it
works quite well in that respect. Anti-entropy handles disconnections well
as the process can simply continue from the last received write when the
connection is re-established. Furthermore, only a small amount of state
is needed before the transmission of writes can start. No optimizations
have, however, been made for weakly connected operation. As stated in
[PST+97], quite a lot of bandwidth could be saved by optimizing the write
messages propagated during anti-entropy.

The fact that each mobile device may work as a server raises some
concerns regarding security, as one cannot naively trust every mobile
server to be friendly. As discussed in [S+97], some level of security can
be achieved by digitally signing each write operation and maintaining a
trusted server site that keeps a full log of operations. The overhead of es-
sentially having to sign every message is, however, not negligible and will
impact performance.

Still, given that Bayou was designed with quite similar objectives as the
MDIB under consideration in Fuego Core, it is very important to ask why
it is not in widespread use, i.e. why has Bayou not been adopted as a
storage solution for mobile devices?

The answer appears to be related to the difference between academic
and practical usage, as Bayou was very successful as a research project

98

4.5. KEY-BASED ROUTING

and is one of the must-know references for any researcher in distributed
storage.

When examining Bayou from a programmer/engineering point of view,
there are indeed some issues which make the adaptation of Bayou harder:

• Using a non-standard API for storage. To store data, you need to use
the Bayou API. The API also exposes complexities of the distributed
storage as well as assumes a relational database model for data
storage.

• The Bayou model of epidemic propagation of data between mobile
devices may not be realistic. Most current mobile devices synchro-
nize to some sort of “server” (home workstation, company server,
etc.) in a client/server fashion. This model may also be easier to
understand for the end user as well as the developer.

• Merge procedures, which in effect also need to implement distributed
data validation, are not easy to write except in simple cases [SS02,
sec. 7.4].

• The design requires an underlying database as well as an interpreter
for the merge procedures, which may be an issue on constrained
devices. One should also notice that the hierarchical file system,
not databases, is by far the most commonly used storage solution in
personal systems.

• No source code or binaries for Bayou appear to be available for
download. Deploying a Bayou-like system would most likely involve
rewriting our own implementation from scratch.

4.5 Key-based Routing

One of the central enablers for massively scalable, fault-tolerant storage
is a Key-based Routing (KBR) infrastructure. The KBR infrastructure pro-
vides a fully decentralized way to route messages to keys, which are dis-
tributed over a set of nodes by some globally known function [DZD+03].

For a network of n nodes, current KBR algorithms generally perform
lookups using O(log n) messages between the nodes, with an additional
storage of O(log n) at each node. The additional storage is due to tables
for routing lookup requests to the node storing the requested key.

Interest in KBR algorithms and distributed hash tables (DHTs), which
are closely related to KBRs, have arisen with the advent of Peer-to-peer

99

CHAPTER 4. SYNCHRONIZATION

(P2P) applications, as KBRs provide a suitable platform for truly scalable
implementations. For instance, a trivial implementation of a P2P file shar-
ing service such as Gnutella (http://www.gnutella.org) would assign
each file a key and store the file data at the node of its key.

In the mobile context, dynamic nodes, i.e. nodes constantly joining and
leaving the KBR, as well as the intra-node bandwidth consumed to main-
tain the routing tables become important. This issue is investigated in
[RGRK03].

Several KBR/DHT algorithms and implementations have been devel-
oped during the last five years: CAN [RFH+01], Chord [SMK+01], Pas-
try [RD01], Tapestry [ZKJ01], and, more recently, Bamboo [RGRK03],
which specifically addresses the issue of dynamic nodes.

4.5.1 Plaxton-Rajaman-Richa KBR

To illustrate KBR, we have chosen the algorithm originally proposed by
Plaxton et al. [PRR97]. Assume a name space of bk nodes. Each node N
in the network is assigned a unique address in the range [0, bk − 1]. When
routing to a destination node D, the address of the node (which we will also
denote with D, since there is no risk of confusion) is divided into k blocks
bk−1 . . . b0 so that D =

∑k−1
i=0 bib

i, with each block in the range [0, b− 1]. For
instance, using b = 16 and k = 4 the blocks of the address AB09 (base 16)
would be 9, 0, B, and A.

Each node N maintains k neighbor maps with b entries, where the entry
(ik, ib) contains the route to the closest node C (including N itself), whose
ik:th block equals ib and the blocks ik − 1 . . . 0 match the corresponding
block in N .

Routing to a destination node D is done one block at a time, starting
from block 0. Assume i is the current block. The next hop from a node
N is given by looking up the node at position bi in the i:th neighbor map,
i.e. the entry (i, bi). In this way, the destination is solved digit by digit. The
maximum length of the path is trivially k (but usually less, since several
neighbor map entries are loopback entries). For a routing example, see
Figure 4.5.

Locating an object O1, located at a server node S works as follows. A
hash function is used to calculate a mapping from O1 to a node R, which is
the “root node” of the object. When O1 is created at S it is published to the
infrastructure by sending a message 〈S, O1〉 from S to R, which states that
O1 can be found at S. All nodes on the path from S to R (including R) store
this information. When addressing O1 from a node C we send a message

100

http://www.gnutella.org
http://www.gnutella.org

4.6. OCEANSTORE

L 01
L 10

L 01
00 L

10 L
11 L

10 L
01 L

A

B

00 10 11

01

Figure 4.5: Routing using the algorithm of Plaxton et al. In this example
b = 2, k = 2 and the distance measure is the geometrical distance between
the nodes in the figure. The address of the node is written over the node’s
routing table. In the routing table, the entry (ik, ib) is at row ik column ib;
L means that the entry points back to the node (a loopback entry). The
arrows A and B show the routing of a message from node 00 destined for
node 11.

destined for R (R is obtained from O1 using the same hash function that S
used). At some point (at latest when reaching R) the message will route
through a node that has knowledge of O1, which then is able to forward
the message to S, as shown in Figure 4.6. If a replica of O1 is published at
another server S ′, the publishing works similarly, with the change that the
message 〈S ′, O1〉 replaces 〈S, O1〉 at each node where S ′ is closer than S.

4.6 OceanStore

The OceanStore project [R+01b, K+00, REG+03] (http://oceanstore.
cs.berkeley.edu) at the University of California at Berkeley is an attempt
to construct a secure highly available and reliable storage system on a
global scale. The system is envisaged to support the storage needs of
some 10 billion users, amounting to a total capacity of roughly 1018 bytes.
The distinguishing features of OceanStore are its massive scale, content-
based routing, strong support for security, and use of introspective tech-
niques to optimize the performance of the system. An open source proto-
type implementation of OceanStore, called “Pond”, was released in 2002.

The fundamental unit of storage in OceanStore is an encrypted binary
object, identified by a fixed-length globally unique identifier (GUID). Ob-
jects are stored persistently and new versions are automatically created
with each update. To give the illusion of mutable objects, a special GUID
called the active GUID is used to access the latest version of an object.

101

http://oceanstore.cs.berkeley.edu
http://oceanstore.cs.berkeley.edu
http://oceanstore.cs.berkeley.edu

CHAPTER 4. SYNCHRONIZATION

L 01
L 10

L 01
00 L

10 L
11 L

10 L
01 L

A

B
C

<O1,11>

00 10 11

01

<O1,11>

<O1,11>

D

Figure 4.6: Object lookup using the algorithm of Plaxton et al. Node 00
publishes O1, whose root node is 11. The arrows A and B indicate the
path of the published message. When node 10 queries for O1, it sends the
query to node 11. However, the location of O1 is discovered at node 01
after the first hop and the message is sent directly to node 00 (arrows C
and D).

To facilitate fault tolerance and to increase performance, active objects
are automatically replicated and distributed among network nodes as seen
fit by the system. Older versions of an object are stored in a highly fault-
tolerant archival mode. In archival mode, an object is encoded using era-
sure codes and divided into fragments that are spread over a large number
of servers. The original object can be reconstructed from any sufficiently
large subset (e.g. 30%) of the fragment set.

The mapping from object names (such as human-readable file names)
to object GUIDs is accomplished by hashing over the object name and
some additional information, such as an encryption key. Objects can also
be named by hashing over the object’s content, e.g. in the case of archived
objects.

The devices participating in the OceanStore infrastructure are nodes
in an overlay network1 that implement KBR on top of an existing IP infra-
structure. The main feature of the overlay network is its ability to route
messages (e.g. data reads) to the “closest” instance of a stored object.
The KBR mechanism is one of the fundamental enablers of fault tolerance
and replication in OceanStore.

The architects of OceanStore have done their utmost to eliminate sin-
gle points of failure from the system. This is reflected throughout the de-
sign and especially in the subsystem called the inner ring (or primary tier 2),

1That is, an application-level virtual network on top of an existing physical one. A
well-known example is Gnutella.

2[K+00] uses the term primary tier, later publications [R+01b] use the term inner ring.

102

4.6. OCEANSTORE

which handles global ordering and commitment of update operations, and
provides a source of data with strong consistency guarantees. The task
that the inner ring performs is typically handled by a single authoritative
server in other distributed storage systems such as Bayou and Coda.

To the application developer OceanStore provides its services through
sessions. Sessions may be created with different types of consistency
guarantees like in Bayou. As expected, there is a tradeoff between con-
sistency guarantees and connectivity: in cases of disconnection or weak
connectivity, strong consistency cannot be guaranteed.

The basic assumption regarding security in OceanStore is that the in-
frastructure is untrusted. In practice this means that no node except the
client is allowed to see unencrypted data, limiting read access to those
in possession of the encryption key. Write access is controlled through
signed access control lists. Measures have also been taken to prevent
malicious servers from replacing or changing objects to which they do not
have access rights.

OceanStore was designed to be self-maintaining. This implies two fun-
damental properties: fault tolerance (the mechanisms of which were de-
scribed above) and self-repair. The mechanisms for self-repair in Ocean-
Store include the ability to automatically handle both unexpected and ad-
vertised insertions and removals of nodes, processes that monitor the net-
work for suboptimal routes and periodically sweep through OceanStore to
check and repair objects (using archival fragments), as well as models for
predicting server and disk failures.

To further reduce the need for manual tuning, introspective processes,
i.e. processes that observe the system and tune based on these observa-
tions, have been deployed. Introspection is used for cluster recognition,
whereby clusters of closely related files (e.g. a set of files a user is actively
working on) are recognized. This clustering information, along with infor-
mation on usage patterns, is utilized by another introspective process, the
replica manager. The replica manager is able to intelligently prefetch files
to a server close to the user: mail is automatically fetched to the user’s
workstation during office hours and to the user’s PDA while traveling.

The use of fault-tolerant encodings, redundancy throughout the sys-
tem, and introspective processes aid in achieving such desirable proper-
ties as scalability, resistance to denial-of-service attacks and censorship,
and durability [Kub03].

103

CHAPTER 4. SYNCHRONIZATION

4.6.1 Storage and Update Model

OceanStore uses a twofold approach for accessing data objects [K+00].
First, a fast probabilistic algorithm, based on Bloom filters, is used to look
for the data in nearby nodes. If the probabilistic access fails, an approach
based on KBR is used.

Bloom filters [Blo70] are a way to represent sets compactly with some
probability for false matches. The nodes store Bloom filters for the objects
in adjacent nodes up to some depth. If a filter indicates a match routing to
the corresponding node can be done directly.

The KBR method is based on the Tapestry overlay and routing infra-
structure (also developed at Berkeley) which is used for routing the mes-
sages to the closest instance of a stored object. Tapestry implements
a variation of the KBR mechanism introduced by Plaxton, Rajaman, and
Richa, with enhancements for fault tolerance and dynamic insertions and
removals of nodes.

Each stored object is assigned a set of servers, which form the ob-
ject’s inner ring. The servers in the inner ring agree on updates using a
Byzantine agreement protocol [LSP82], guaranteeing consistency among
the replicas. The protocol allows any m out of 3m+1 servers to fail without
the ring going inoperational. The penalty for this high level of fault toler-
ance appears to be a relatively large amount of network traffic between the
servers in the inner ring. However, in [K+00] it is argued that the overhead
of the Byzantine agreement protocol is not in fact very large.

In addition to the replicas in the inner ring, there may exist secondary
replicas of an object throughout the system, distributed in the form of trees
rooted at servers in the inner ring. To summarize:

• A strongly consistent and current copy of an object can always be
obtained from the servers in the object’s inner ring.

• Objects are replicated. The replicas increase availability, but lack
strong guarantees on currency and consistency.

Updates

An update to an object consists of a (predicate, action) pair that is propa-
gated through the overlay network. The action corresponding to the first
predicate that evaluates to true is executed atomically, and the update is
committed. If no true predicate is found, the update is aborted. Data lock-
ing is not used to avoid the problems traditionally associated with locks,
e.g. stale locks and too aggressive locking preventing shared access.

104

4.6. OCEANSTORE

These ideas are similar to those used in the Bayou system, with the
update predicates acting as Bayou merge procedures, and the inner ring
in the role of the Bayou primary replica. The fact that only ciphertext is
stored in OceanStore limits the available predicates that can be used in the
update operations, and the substitution of a primary replica with a group
of servers makes the update procedure more challenging.

According to [K+00], updates may be propagated to the secondary
replicas in three ways: the updates get propagated down the tree of repli-
cas from the inner ring as shown in Figure 4.7, replicas may send requests
for updates up the tree, or in an epidemic manner (as in Bayou). During
an epidemic update, the replicas quickly spread tentative updates among
themselves and pick a tentative serialization order. Tentatively updated
replicas can be read by applications that do not require strong consistency
guarantees. In [REG+03], which describes the current prototype imple-
mentation of OceanStore, only the first method of propagating updates is
used: when the inner ring has agreed upon an update, it is multicast to all
replicating instances.

The predicates available for updates are block-compare, predicates
on metadata, such as compare-size and compare-version, as well as a
search predicate for searching the ciphertext for a string (without reveal-
ing the cleartext of the search string). Operations such as replace-block,
delete-block, and insert-block are also available if we assume that certain
types of block ciphers are used.

ACID semantics can be achieved by using the compare-block predicate
to check the read set of the transaction and then writing the updated data
with replace-block. If an application requires reads to return data that is
current and strongly consistent (e.g. a banking transaction) it needs to
communicate with the inner ring, since the secondary replicas may contain
outdated or tentative data. In theory, this means that a mobile device that
requires strong consistency guarantees needs to be in the inner ring.

A question that the lockless transaction scheme raises is that of live-
locking. Consider the transaction {a = a + 100, b = b − 100} (which may
signify the transfer of $100 from account b to account a). With lockless
transactions, the amounts a and b first need to be read, and then an up-
date constructed that checks that the amounts are the same that were
read before updating them. The concern here is that the read and up-
date cannot be done atomically, so there is always the possibility that an-
other transaction updates the amounts in between — in which case the
update aborts and must be started all over. However, there is no guar-
antee that the update will succeed on the second try, or any subsequent
one for that matter, i.e. the update may livelock. This issue has reportedly

105

CHAPTER 4. SYNCHRONIZATION

...

t
archive

t
hop

t
request

t
agree

t
disseminate

Time

Archive

Secondary
replica

Secondary
replica

Secondary
replica

Application

Inner ring

Application

Figure 4.7: The path of an OceanStore update. An update proceeds
from the client to the primary replica of its target data object. There it
is serialized with other updates and applied to its target. The update is
then multicast down the dissemination tree to other replicas. Simulta-
neously, the new version is erasure-coded and sent to archival storage
servers [REG+03].

been encountered when implementing NFS [Now89] directory updates in
the OceanStore prototype [REG+03].

The predicate-action update scheme is also able to handle simple con-
flict resolution automatically. As an example, if the most recent version
should always persist, the compare-version predicate can be used to check
if the version number has increased since the last read, and the write dis-
carded if that is the case.

4.6.2 OceanStore as an MDIB

The authors of [K+00] mention the possibility of disconnected operation of
OceanStore. The fundamental enablers are indeed there: local replicas
can be stored on the mobile device and data writes need not propagate
immediately. There are, however, several aspects of OceanStore which
may not be optimal in the mobile environment:

106

4.6. OCEANSTORE

Protocols There is no mention of the protocols used by OceanStore hav-
ing been optimized to save bandwidth or round-trips. The amount of
different protocols active in OceanStore appears quite large: client
update requests, epidemically propagated updates, pushed updates
to secondary replicas, update requests from replicas, several intro-
spective processes exchanging system state, and processes sweep-
ing through all the stored objects. In a mobile environment, pre-
sumably several of these processes would need to be disabled to
conserve bandwidth.

Most importantly, data updates are currently not optimized for limited
bandwidth. The use of ciphertext makes it harder to add incremental
updates to the protocol, which is a common technique for minimizing
bandwidth usage. This point is, however, not related to OceanStore
in particular, but to any system storing ciphertext.

Complexity and Code Size The reviewed OceanStore prototype, which
does not implement the full set of protocols described in [K+00] and
[R+01b], already contains some 50,000 Java statements [REG+03],
indicating that it may be too complex for current mobile devices.

Overhead of Strong Consistency Putting a member of the inner ring on
a mobile device seems to incur a performance and bandwidth penalty,
given the rather complex Byzantine agreement protocol. Implemen-
tation experiences from [REG+03] also show that the hosts in the
inner ring are required to perform rather heavy computations for the
purpose of archiving and cryptographically signing data.

Disconnections Unexpected disconnections are an issue that the system
needs to deal with. Practical implications are that protocols should
minimize the amount of state and that connection buildups and tear-
downs should be light. The update messages seem to be stateless
and hence well suited for mobile operation. Connection buildups, on
the other hand, may be problematic due to the initial traffic to a node
joining a Tapestry network. The use of a KBR better suited for mobile
usage than Tapestry might alleviate this problem, though.

As for security, the fact that OceanStore was designed with strong se-
curity in mind from the ground up is a merit in the wireless environment.
Furthermore, OceanStore does not distinguish “servers” and “clients”, and
should thus be able to work in peer-to-peer mode.

Although currently not ideal for deployment on actual mobile devices,
OceanStore could very well play a role on the server side of an MDIB. Mo-

107

CHAPTER 4. SYNCHRONIZATION

bile access points could deploy OceanStore for synchronizing data among
each other, whereas synchronization between a mobile device and its ac-
cess point would be handled by a more lightweight approach.

4.6.3 Practical Issues

The source code for the OceanStore prototype is available on the web at
http://oceanstore.sourceforge.net. Project activity during 2002 and
2003 seems to have been concentrated on development originating at
Berkeley. During 2003, some 10% of the Java code in the CVS repos-
itory was changed1. OceanStore is licensed under a BSD-style license,
making it easily available for experimentation and utilization in a research
project. The underlying routing framework, Tapestry, is also available as
a separate module at the OceanStore website http://oceanstore.cs.
berkeley.edu.

To the programmer, OceanStore provides several alternative APIs. The
base API provides full access to OceanStore functionality in terms of ses-
sions and session guarantees, updates, and callbacks (which are used to
inform the application e.g. when an update commits or aborts). On top
of this API, more familiar APIs (called facades) may be implemented, al-
lowing legacy applications to harness the benefits of OceanStore. As an
example of this, the OceanStore prototype includes the ubiquitous Unix
file system API [REG+03].

4.7 SyncML

SyncML (http://www.openmobilealliance.org/syncml) [Pab02, Syn02b,
Syn02a] is an industry initiative to standardize the way data synchroniza-
tion is handled on mobile devices. SyncML started out as an independent
initiative, but joined the Open Mobile Alliance (OMA) in late 2002. The
OMA Data Synchronization Working Group continues the work originated
in the former SyncML Initiative. Participating companies include wireless
heavy-weights Ericsson, Nokia, Motorola, and IBM.

Synchronization has traditionally been handled in an application-spe-
cific and often proprietary manner, which leads to limited interoperability
between applications, lack of support for different transport methods, as
well as an inconsistent user experience, due to differing designs. The goal

1cvs diff yields about 27,000 inserted and 10,000 deleted lines between March
2003 and February 2004

108

http://oceanstore.sourceforge.net
http://oceanstore.cs.berkeley.edu
http://oceanstore.cs.berkeley.edu
http://www.openmobilealliance.org/syncml
http://www.openmobilealliance.org/syncml

4.7. SYNCML

of the initiative is to be able to remedy this situation and enable “mobile
devices that support synchronization with any networked data” (and vice
versa).

To this end the SyncML initiative has specified a synchronization frame-
work. The essential parts of the framework are the SyncML Synchroniza-
tion protocol, the SyncML Representation Protocol, and bindings for vari-
ous transport protocols such as HTTP [FGM+99] and OBEX [IRD03]. The
initiative has also released a set of protocol specifications for management
of device configurations [Syn01], the rationale being that the synchroniza-
tion framework can be leveraged when synchronizing configuration data.

The synchronization protocol defines the interaction between a device
and its peer. This entails connection setup, authentication, synchronization
(in several modes), and object ID mapping procedures. The representa-
tion protocol presents the protocol messages in detail in terms of syntax,
parameters, and result codes. The representation protocol also introduces
the ability to filter and search the database as well as execute commands
on the peer.

To illustrate the difference between these, we may for instance consider
the authentication procedure: the former specification defines when and
which messages are sent, while the latter gives the format for each of the
messages sent. We will refer to both protocols collectively as the “SyncML
protocol”.

The main features of the SyncML protocol are

• Multiple transport protocols. SyncML can work over HTTP, OBEX,
WSP, and Bluetooth.

• Support for synchronization of any data that can be expressed as a
collection of (key,value) pairs. Values may be arbitrary binary data,
including XML documents, vCards, email messages, etc.

• Optimization for the mobile environment.1

• Use of existing technologies such as XML, HTTP, and TCP/IP.

The SyncML architecture is client/server, the mobile device normally
being the client and its strongly connected peer the server. The syn-
chronization mechanism is based on transmission of updates between the
client and the server. Typically, the client sends its updates to the server,
which reintegrates them (possibly solving conflicts). The server then sends

1The author has been unable to locate any further references on how this optimization
was done.

109

CHAPTER 4. SYNCHRONIZATION

its set of modifications (including possibly resolved conflict entries) back to
the client, which stores them in its database. The update operations allow
insertion, deletion, replacement, and copying of objects.1 Several modes
of synchronization are supported, used to bring either or both devices up
to date, and to account for the possibility of a missing update log:

Two-way synchronization Client-initiated, updates are transferred from
the client to the server and vice versa.

Slow sync The client transmits its entire dataset to the server, after which
the server transmits updates to the client. Used instead of two-way
synchronization if the client update log cannot be used for some rea-
son (e.g. the log is lost).

One-way sync from the client Updates are transferred from the client to
the server only.

One-way sync from server Updates are transferred from the server to
the client only.

Refresh sync from client The client sends its entire dataset to the server,
overwriting any corresponding data in the server database.

Refresh sync from server Like refresh sync from client, except that the
entire server dataset is transferred to the client.

The SyncML protocol does not specify how conflicts are resolved; this
matter is left to the implementation of the synchronization engine. The pro-
tocol does, however, define some messages and status codes relating to
conflict resolution, e.g. a status code indicating that a conflict was resolved
by merging conflicting records.

To know from which point in the update logs synchronization should oc-
cur, as well as to enable devices to synchronize with multiple peers, syn-
chronization anchors are used. The anchors mark positions in the update
logs (similarly to how positions in the KML in InterMezzo are remembered)
for each peer, and are used to check that no updates are applied more
than once or lost on successive synchronizations.

When adding items in disconnected mode, there is the question of how
to allocate new object IDs. In systems such as Coda, this is solved by
tentatively assigning IDs, which are then verified upon synchronization.
SyncML takes a different approach: each client manages its own set of

1From a theoretical standpoint, it is interesting to note that there is a copy operation
but no rename operation.

110

4.7. SYNCML

IDs (called local IDs). During synchronization a map (stored on the server)
between local IDs and server (global) IDs is generated.

The authentication methods supported by SyncML work similarly to
HTTP basic and digest authentication.

4.7.1 Using SyncML in an MDIB

Since the synchronization problem SyncML sets out to solve and standard-
ize has significant overlap (data synchronization over the wireless hop)
with that considered in the Fuego Core project, we should carefully con-
sider using SyncML technology when applicable.

Therefore we evaluate SyncML by analyzing it with respect to the def-
inition of synchronization used in this report, i.e. with respect to update
detection, update propagation, and conflict resolution. In the analysis we
have included the SyncML protocol, as well as two publicly available im-
plementations: the SyncML C toolkit and the sync4j Java implementation.

Update detection The SyncML protocol does not specify how to deter-
mine which data items have changed since a previous synchroniza-
tion. Update detection is thus not addressed by the specification.
The C toolkit also lacks this functionality. The sync4j implementation,
on the other hand, includes some concrete implementations (e.g. the
synchronization of files in a single directory).

Update propagation The SyncML protocol defines update propagation,
and both the C toolkit and sync4j provide concrete implementations.

Reconciliation Reconciliation is addressed by sync4j, which provides
concrete implementation examples. The SyncML protocol and the
C toolkit do not address this issue.

The SyncML protocol by itself or in combination with the C toolkit can
thus be used to provide a means of propagating updates between devices,
the benefit of the C toolkit being that we would not have to implement the
generation and parsing of SyncML messages. Using SyncML for update
propagation would enable communication with other SyncML-enabled de-
vices, as well as make it possible to use any of the transports supported
by SyncML.

However, if we want to optimize bandwidth usage by employing more
efficient encodings (including delta transfers), we would have to implement
our own SyncML transport. Furthermore, adding any type of “intelligence”

111

CHAPTER 4. SYNCHRONIZATION

to the synchronization process will most likely require customized code
on both ends of the connection. Given this scenario, it seems easier to
bypass SyncML entirely, and just transmit updates using a simple binary
transfer protocol such as HTTP. At the same time we would be able to by-
pass limitations such as the SyncML data model, the need to encapsulate
BLOBs inside XML, and the need to solve conflicts on the server.

The sync4j implementation would potentially be a better starting point,
since it looks promising for experimenting on synchronization policies, e.g.
when and what to synchronize. There is, however, the issue of complex-
ity: the SyncML specification appears quite complex, both to use [Fan02,
Buc02] and in terms of implementation size. Indicative of this is that the C
toolkit is some 54,000 lines and sync4j some 56,000 lines.1

4.7.2 Deployment Issues

A Java implementation of the SyncML framework, a SyncML server, and
practical examples are developed in the Sync4j (http://sourceforge.
net/projects/sync4j/) project. The project provides a comprehensive
implementation of SyncML-based synchronization. Sync4j is a valuable
aid to developers learning to utilize the collection of SyncML specifica-
tions. The code is available under the BSD license with some reservations
regarding patented parts of the protocol.

4.8 Synchronization Policies

It is generally possible to associate a set of parameters with the data syn-
chronization process. Examples of such parameters are

• when to synchronize (at the user’s request, at regular intervals, etc.)

• what to synchronize (synchronize everything, synchronize important
data first, etc.)

• transport method, i.e. choosing appropriate encodings (e.g. fast ver-
sus bandwidth-conserving) and interfaces (e.g. GPRS versus Blue-
tooth).

• reconciliation method, i.e. how should conflicts be resolved.

1The line counts were obtained by counting .c, .h and .java files in the SourceForge
CVS repositories on Feb 18, 2004

112

http://sourceforge.net/projects/sync4j/
http://sourceforge.net/projects/sync4j/
http://sourceforge.net/projects/sync4j/

4.8. SYNCHRONIZATION POLICIES

We define a synchronization policy to be a set of parameter values
for the synchronization process. For instance, the mobile policy may
be set up as {when=ask, transport=GPRS}, whereas the home policy is
{when=hourly, transport=ethernet}.

To the author’s knowledge, there seems to be no work on synchroniza-
tion policies in general. This is quite understandable, as each particular
synchronization system has its own set of assumptions and parameters
for tuning the process. Furthermore, the boundary between what con-
stitutes a synchronization algorithm and what constitutes a parameter is
quite fuzzy.

Some examples of policies were obtained by studying existing systems:

What In [MES95] a model of user patience is used to determine whether
a cache miss should be handled transparently or the user should
be asked for confirmation before fetching the object. The threshold
depends on available bandwidth and the priority of the object (which
the user can set). For instance, a 1 megabyte object at medium
priority would be fetched transparently at a link speed of 64kbps,
whereas the user would be asked for confirmation on a 9.6kbps link.

[HKZ02] describes an extension to Coda that allows users to ei-
ther specify the maximum amount of time or money that should be
spent on reintegration. The implementations of the policies are rather
straightforward: they simply stop the reintegration process whenever
the maximum has been reached — there is, for instance, no prioriti-
zation in what objects to fetch.

Transport Method [Mob01] describes an “intelligent delta selection pro-
cess” which is employed in a commercial synchronization tool called
Network/Unplugged. The tool utilizes deltas for object synchroniza-
tion, and different types of deltas can be used depending on user
needs. The available methods are block-level differencing, byte-level
differencing, and write-monitor differencing. Detailed descriptions of
these methods are not publically available, but from [Mob01] it ap-
pears that byte-level differencing essentially works as Unix diff and
block-level differencing as diff, but where each token corresponds
to a block of bytes. Write monitoring works by gathering a modifica-
tion log, which is passed to the peer.

Each of these methods presents a different level of tradeoff between
bandwidth and computing resources. Block-level differencing uses
the most amount bandwidth, but requires the least amount of CPU

113

CHAPTER 4. SYNCHRONIZATION

cycles. For certain files (such as databases), write monitoring uses
the least amount of bandwidth, but the most amount of CPU cycles.

When The original implementation of Coda [SK92], which did not have
support for weakly connected mode, exhibits a very simple policy of
when to synchronize: synchronize when the device is reconnected
to the network. The same type of simple policy is employed in Mi-
crosoft’s IntelliMirror [Mic99a] for network folders made available for
off-line use.

Reconciliation Method The way InterMezzo solves conflicts depends on
the active policy. The available conflict resolution methods are “Mo-
bile”, “High Availability”, and “Re-synchronization” [Bra02].

4.9 Generic Data Reconciliation Methods

An important part of the synchronization process, especially when no strict
concurrency control is employed, is the data reconciliation phase. In the
Fuego Core project we are particularly interested in investigating gener-
alized methods for data reconciliation, as opposed to application-specific
data reconciliation.

The ability to perform automatic reconciliation is particularly important
in the mobile environment, as many applications become “involuntarily col-
laborative”. Consider a simple text editor for instance: in the desktop world,
authors may take turns editing a document. In the mobile world, on the
other hand, one of the authors may be disconnected from the network for
an extended amount of time, making the approach of taking turns infeasi-
ble and raising the need for disconnected collaboration.

A solution is to add data reconciliation capabilities separately to each
application. Unfortunately, this will complicate application development,
making it less attractive to write mobile applications. Applications will also
be larger, wasting the already constrained resources on the mobile de-
vice. There is thus a need for data reconciliation facilities that incur little
overhead on application development and on the size of the executable.

An important aspect of a reconciliation algorithm is the data structure
it is designed to operate upon. These include sets of tuples (for relational
databases), ordered lists (for text files), trees and graphs (for structured
data), as well as application-specific structures. As data structures be-
come more complex, the number of ways of changing the structures and
integrating the changes increases, adding to the complexity of the merging

114

4.10. STRATEGIES FOR CONSERVING BANDWIDTH

algorithm. In addition, the semantics of the data structures may affect how
the merging should be performed.

Despite these difficulties, general reconciliation algorithms for complex
data structures are clearly useful. Frequently, an understanding of the full
semantics of the data is not required for successful reconciliation. For in-
stance, consider reconciliation by three-way merging of source code using
the Unix diff3 tool: the semantic structure of the source code may be very
complex, yet valid results are often obtained from diff3, which considers
the structure of its input data to be an ordered list of text lines.

The most common approach is to not include any generic reconciliation
capabilities at all, i.e. to treat data objects as atomic units whose content
is totally opaque. Instead, hooks for data reconcilers are provided. The
reconcilers are typically called when the system detects concurrent modi-
fication. Coda and Bayou both take this approach1.

The Concurrent Versions System (CVS) (http://www.cvshome.org/)
supports two types of files: binary and text. Arbitrary binary files can
naturally not be automatically reconciled, but on text files, CVS uses a
diff3-like algorithm to reconcile changes. Any conflicts encountered dur-
ing reconciliation must be resolved outside CVS (e.g. by the user). CVS is
perhaps the most well-known system with generic (although limited) rec-
onciliation capabilities.

Moving towards more complex structures, we arrive at the tree. It is
a particularly interesting data structure to reconcile, as trees are general
data structures expressive enough to accurately present the structure of
the vast majority of application data. The use of a generic reconciliation
engine for tree-structured data encoded as XML is discussed in [Lin03].

More complex structures (e.g. graphs) than the tree seem to quickly be-
come intractable, especially in the general case. As an example, consider
the program merging algorithm presented in [HPR89].

4.10 Strategies for Conserving Bandwidth

Given the often limited capacity of wireless links we need to optimize the
amount of data transmitted. In this section we discuss strategies for con-
serving bandwidth that are applicable to the update propagation phase.
The optimization of the set of changes obtained during the update detec-
tion phase is not considered.

1Note that the Bayou merge procedures are supplied by the application

115

http://www.cvshome.org/
http://www.cvshome.org/

CHAPTER 4. SYNCHRONIZATION

From information theory we know that the entropy or “information con-
tent” of a message is always calculated with respect to some model. The
more probable (“unsurprising”) the message is with respect to the chosen
model, the fewer bits are required to encode it.

The bandwidth conservation strategies we mention here are

• Data compression,

• Delta transfers,

• Content adaptation, and

• Operation shipping.

With some generalization1, these strategies represent increasingly ex-
pressive models to encode data, yielding the potential for increasingly effi-
cient encodings. The models are, however, also increasingly specialized,
meaning that the set of data that may be efficiently encoded becomes
more and more restricted.

4.10.1 Data Compression

Compressors for the transport of arbitrary byte streams are already widely
used for minimizing bandwidth usage on many levels in the protocol stack
(e.g. Modem line encoding, IP header compression in the Point-to-Point
Protocol, and gzip [GA02] content encoding in HTTP replies).

The use of generic compression in synchronization appears quite ben-
eficial, as it should provide significant savings in several cases (e.g. text
files and uncompressed graphics). However, as stated earlier, one needs
to take into account the computation resources required by the algorithm.
Another issue is the integration of encryption and compression, as en-
crypted data will not compress.

4.10.2 Delta Transfers

Delta transfer, i.e. the transfer of changes, can be employed when a previ-
ous version of the data is available. As the previous version frequently is
quite similar to the new version, the delta may be significantly smaller than
the original data.

1E.g. generic delta transfers may be less specialized than XML-specific compression

116

4.10. STRATEGIES FOR CONSERVING BANDWIDTH

The systems discussed make use of delta transfers on some level:
Coda only transmits modified files upon reconnection (instead of blindly
copying the entire file tree), as does InterMezzo. Bayou servers send write
logs instead of the entire database when synchronizing with their peers.
Delta transfers can, however, potentially be used to a much higher de-
gree in these systems, by utilizing delta transfers for individual files (binary
objects) as well.

In [HKZ02] a modification to Coda is presented where file updates are
handled by delta transfers. The deltas between files are generated by run-
ning the well-known Unix diff utility on the old and new versions, the old
version being known to exist at the receiving end. The output of diff is
transmitted over the network, where it is used to generate the new ver-
sion. Experiments on text files in [HKZ02] indicate 65–95% savings in the
number of bytes transferred between client and server. Although these
numbers are overly optimistic (no transfers of binary files were included,
since the standard diff cannot handle these) they show the potential of
delta transfers on the file level.

A file synchronization algorithm explicitly developed for high-latency
low-bandwidth links is presented in [Tri99]. The algorithm, implemented
in the freely available rsync tool, can be used on both binary and text files,
and does not assume that a particular version of the target file exists or is
retrievable on the receiving end, as is the case in [HKZ02]. However, the
more similar the existing version on the receiving end is, the more band-
width can be saved.

Assume that we have two devices A and B, and we want to transmit a
file F from A to B. On B there exists a file F ′, which is somehow related
to F (e.g. F is a newer version of F ′). The basic1 rsync algorithm consists
of three stages:

1. B splits F ′ into blocks and calculates a message digest2 for each
block. Let the digests be S1 . . . Si. The digests are transmitted to A.

2. On A, F is scanned for blocks whose digest match one of the digests
S1 . . . Si. As a result, F can be expressed as a sequence of verbatim
bytes from F interleaved with references to matching block digests.
This sequence is transmitted to B.

1For brevity, several important details have been omitted here, such as the use of two
types of message digests.

2The message digest is much shorter than the block. A block may be e.g. 1 KB while
the digest is 16 bytes (the size of the MD4 digest originally used).

117

CHAPTER 4. SYNCHRONIZATION

3. B now constructs F using F ′ and the received sequence. When ver-
batim bytes are read from the sequence, these are written directly to
F . When a reference to a matching digest is read, the corresponding
block from F ′ is written to F .

Thus, if for instance both files are binary files, and F would be identical
to b1 . . . bkF

′, where b1 . . . bk are some bytes inserted at the start of F ′,
the algorithm would transfer the sequence b1 . . . bk followed by references
to the digests S1 . . . Si. Assuming a block size of 1024 bytes, 4 bytes to
index the digests, k = 1024, and F ′ approximately 1 MB in size, roughly
5 KB of data would be transmitted instead of 1 MB. In contrast to diff,
the algorithm is also capable of handling moves of data (which show up as
block reorderings).

In practice rsync may perform much worse due to small but scattered
changes (block matches are destroyed by a few non-matching bytes), as
well as compressed data (changes in data at position i may affect all bytes
emitted by a compressor after it has passed over position i). Some inter-
esting thoughts on how to remedy this problem are given in [Tri99].

4.10.3 Content Adaptation

In some cases it is possible to reduce bandwidth consumption by modify-
ing the data itself. Examples of content adaptation include changing the
data format, color removal and resampling of images, reducing the frame
rate of video streams, and filtering of newsfeeds according to user prefer-
ences.

As content adaptation and transcoding is a large research field of its
own, we point the interested reader to other publications, such as [JHE99].
Especially the WWW is an application that lends itself quite easily to con-
tent adaptation (e.g. by restructuring the HTML code and modifying im-
ages). For an example, see [LHKR96].

4.10.4 Operation Shipping

In operation shipping [LLS02] the client ships the user operation that up-
dated the data, rather than the data itself, across the network. A user
operation may be, for instance, a program invocation (e.g. cc myfile.c),
or an operation logged from interactive use of an application (e.g. rotating
an image).

As an example, consider a binary program file hello, which is gener-
ated by compiling the C source code with the command cc hello.c -o

118

4.11. CONCLUSIONS

hello. The idea of operation shipping is to transmit the above command
instead of the hello binary over the network.

Operation shipping may offer significant bandwidth savings: the exper-
iments conducted in [LLS02] yielded 12- to 400-fold improvements. The
drawbacks are that the operations and their relation to the data objects
need to be determined somehow, as well as the need for a shared config-
uration (e.g. a C compiler) on both ends of the connection.

4.11 Conclusions

Among the reviewed systems there is none that would readily fit the role
of a mobile distributed information base. Each system has its strengths
and weaknesses. To design an information base for operation in a mo-
bile environment we need to combine the best aspects of these systems.
Coda and InterMezzo appear to be the most promising starting points. In
Coda’s case there is a certain maturity emerging from over a decade of
research, the fact that it addresses several of the concerns of the mobile
environment, and freely available source code. InterMezzo, being derived
from Coda, should have many of its strengths, as well as a simpler design,
and be well suited for mobile devices.

OceanStore is an interesting concept for implementing massive scal-
ability, fault tolerance, and high availability on the server side. However,
it appears that OceanStore is a bit too complex for current mobile de-
vices. Furthermore, OceanStore itself is a very bold research project
that explores a multitude of new solutions, and hence relying solely on
OceanStore for our research appears to be taking quite a risk. A less bold
approach in Fuego Core would be to design with OceanStore in mind for
the fixed infrastructure, but allow for other storage solutions as well.

Bayou is especially interesting in the sense that it is the only system
working as a shared database (as opposed to a shared file system). If it
appears more useful to develop a database type of MDIB, Bayou is the nat-
ural starting point. However, the source code for Bayou is not, as far as we
know, publicly available, requiring considerable amount of programming to
even get a base system up and running.

It should be noticed that there are several design features that all of the
systems have in common. If we choose to design an MDIB on our own,
we should carefully consider before deviating from these:

• Acceptance of the tradeoff between strong connectivity and consis-
tency versus weak connectivity and consistency. There is an agree-
ment that strong consistency on weak connections is infeasible.

119

CHAPTER 4. SYNCHRONIZATION

• Use of aggressive caching. Indeed, it is hard to imagine providing
high availability in disconnected mode without aggressive caching.

• Support for write access while disconnected. Read-only operation
during disconnection is not a viable alternative.

• The use of optimistic replication, with subsequent reintegration and
conflict resolution. Write or read locking is not used in any of the
systems to avoid conflicts.

Some issues in this review appear to be orthogonal, and it should thus
be possible to “pick and choose” the best approaches from different sys-
tems. As an example of this, consider e.g. cache coherency approaches
and object transfer mechanisms: it should be possible to modify the object
transfer mechanism (by using such techniques as delta transfers) without
affecting the cache coherency mechanism.

An important question, which this review touches only on the surface, is
that of using XML as a storage format, for which we can provide enhanced
functionality. Especially the possibility for generic reconciliation support
appears interesting.

We need to address the question of whether to base the information
base design on a database or a file system. These approaches have dif-
ferent optimal usage scenarios. Databases are more suited for retrieval
and storage of single records in a vast dataset whereas file systems are
more efficient and easier to use for traditional “document-based” applica-
tions, such as text editors, drawing tools, etc. An interesting approach
would be to combine both, e.g. by allowing the file system to be aware of
the structure of files containing XML data.

At least two possible paths of continued research can be envisioned:

1. Developing the underlying synchronizing file system or database, but
not yet address such issues as synchronization policies.

2. Concentrate on developing policies. A synchronization policy en-
gine would be constructed on top of an existing prototype information
base, such as e.g. a combination of Coda and SyncML.

Naturally, combinations of these are also possible. For instance, it
would seem to make sense to pursue the first alternative as far as to have
a prototyping platform, after which one could try approaching the issue of
policies.

120

Chapter 5

Mobile Presence

5.1 Introduction

This chapter reviews the current state of presence services, with special
focus on the needs of mobile computing. Presence services are here un-
derstood as application features or components that deliver elementary
information about the current state of a person to a select group of peers.
The information typically consists of hints about the current availability of
that person for synchronous communication, such as a phone call. Other
types of possible information include, for example, the current location of
that person.

Presence services are often integrated to group collaboration or other
communication tools, most notably in instant messaging systems. Existing
instant messaging technologies are not interoperable on protocol level but
some specify server-to-server protocols, enabling gateways between tech-
nologies. Interoperability work in the IETF Instant Messaging and Pres-
ence Protocol (IMPP) working group is being considered by the bodies
specifying open Instant messaging and presence (IMP) technologies.

5.1.1 Concepts

By definition, presence information describes the current state of a person,
in the sense of present versus absent: “Mike is at the office.” The infor-
mation can also be more fine-grained, like contact hints: “Steff is at the
office, in a meeting. He can be paged but not called.” Presence services
are sometimes referred to as “group awareness software”.

Since instant messaging is a very convenient application for presence
information, it is often coupled with it in various implementations and tech-

121

CHAPTER 5. MOBILE PRESENCE

nologies. These two types of technologies are commonly referred to as
IMP in this chapter.

5.1.2 Presence and Context

The concept of a presence service is easily confused with the concept
of context awareness. Although they share many similarities, there is a
distinction to be made. Context awareness in computing usually refers to
intelligent software that adapts to the situation, a context, that a user or
his devices are in. The term “Context awareness” is used to reference
many different technologies, from understanding and reacting to the social
context of the user to adapting to the network link layer context.

Presence information is more like a collection of singular pieces of in-
formation that may be interrelated. Some of this may be sensor (noise
level) or application level (phone up/down) data. The interpretation of this
is typically left to the user. In the most basic form presence information
describes the availability of a user for interruptive communication. [DA99]

5.1.3 History

In the early 1980s there were a number of different locally-used methods
and occasional prototypes for finding out if a particular person is currently
logged into a network or a mainframe, and for sending them messages.
Early such tools include

write a method of sending/writing text to the terminal of another user

talk an interactive program that enables two persons to chat on the same
machine

who lists users currently logged in on the local machine

finger a method for remotely probing information about a particular user
or users

Internet Relay Chat

The earliest popular instant messaging system that supported a limited
kind of presence information was the Internet Relay Chat (IRC) [OR93].
IRC was first implemented in the year 1988 and rapidly gained wide adop-
tion, particularly among computer hobbyists. An IRC service consists of

122

5.1. INTRODUCTION

a network of servers that relay messages and user information between
one another. Each server may accept any number of connected clients to
which it serves messages and user information from the network.

For messaging IRC currently supports both group chats and private
one-to-one messaging, as well as content sharing. Group chat participants
are able, to certain extent, set policies and access control rules enforce-
able by the IRC servers. Content sharing is achieved by P2P transfers
initiated by client-to-client messages through the IRC service. For pres-
ence information an IRC network provides

• the network address a user is logged in from,

• user-settable away status and an optional explanatory message,

• the time since a user has last said anything (activity), and

• the local time of a user

IRC networks, despite their design problems, continue to thrive as a
global instant messaging and presence service, presumably owing much
to the open and standard protocol. Innovative IRC clients range from full-
fledged desktop applications such as mIRC (http://www.mirc.com) to the
very minimal Short Message Service (SMS) or WAP interfaces [Jus01].
The openness of the protocol has sprouted many service extensions and
new features overlooked or not specified in the original RFC:

formatting A non-standard extension to embed color coding and some
other formatting instructions to message text

character sets The need for internationalization (i18n) has manifested as
conventions for encoding various character sets (Unicode, Japanese,
Cyrillic)

user accounts Some IRC services provide long-lived accounts, perma-
nent chat room ownerships, and user authentication.

The IMP system Secure Internet Live Conferencing (SILC) [Rii03a],
commonly comprehended as “secure IRC”, is discussed on page 132. It
is strongly influenced by IRC and the design addresses many problems
identified in the IRC protocol and architecture.

123

http://www.mirc.com
http://www.mirc.com

CHAPTER 5. MOBILE PRESENCE

ICQ (I seek you)

In 1996 an Israel-based company Mirabilis released its new IMP product
called ICQ. ICQ service architecture was based on the client-server model
where the servers were all provided by Mirabilis, although clients could
send each other instant messages and data directly when possible. The
user client had a simple GUI that showed the status of friends with icons,
and much of its behavior and look is imitated in later IMP products. ICQ
gained user adoption quickly and, by publishing their proprietary proto-
col specification, Mirabilis encouraged the creation of third-party clients.
This helped the adoption of ICQ on many different platforms. ICQ will be
discussed also on page 133. The Mirabilis ICQ client managed to popular-
ize the now-common instant-messaging-related concepts of intrusiveness,
network security, and privacy concerns.

On the wake of ICQ’s success other competing IMP services soon be-
came available. Companies like Yahoo! (http://www.yahoo.com), Mi-
crosoft (http://www.microsoft.com) and America Online (http://www.
aol.com) were all highly successful in establishing global and popular IMP
services. The wide adoption of these highly usable and instantly available
services is now also being seen in the workplace [IWW+02], which raises
new issues about privacy, confidentiality, and security.

5.1.4 Challenges

In recent years IMP applications have become commonplace on the desk-
top, and it is expected that mobile appliances are next. While many issues
remain unsolved on the desktop world, the mobile world presents a whole
new problem set, but perhaps also more mature and standard technology.

Interoperability

Despite the great success and adoption rate of IMP services there is so
far no widely adopted standard protocol or global interoperability between
the established networks. Many highly popular IMP services use a bundle
of a proprietary client, server, and protocol. A client from one IMP ser-
vice provider is unlikely to be interoperable with any other service. Also,
messages and presence information are not exchanged between service
networks. If a user wants to communicate with a peer on another service
provider, he must also subscribe to that other service. Although there are
technical solutions where the client software is able to communicate simul-

124

http://www.yahoo.com
http://www.yahoo.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.aol.com
http://www.aol.com
http://www.aol.com

5.1. INTRODUCTION

taneously with several different networks, the user must still subscribe and
maintain his information in all of them.

If IMP is ever to achieve global success similar to electronic mail, ser-
vice provider interoperability is paramount — otherwise IMP may remain a
service provider value-added service or a niche application. In small mo-
bile devices the embedded software may be hard to update and interoper-
ability by supporting a multitude of different technologies is not feasible.

Security

There are many aspects of security that are of interest in IMP services
and applications. Firstly there is privacy: a user must at all times be able
to control what information is provided of him and to whom. Most solu-
tions accomplish this by empowering the user with reciprocal buddy lists,
promising that the server will honor that. Another question is how good
that promise is when bad business practices, lacking security, or local leg-
islation may void it all. This is also related to the problem of verifying the
identity of a peer: when talking face-to-face, identifying a friend is much
easier than when talking over a network. The richer and more ubiquitous
presence services become with mobile devices, the more crucial proper
management of access control is [HS96].

Another privacy issue, especially prominent in instant messaging, is
unwelcome communication. If a user is unable to restrict who may send
him a message and when — or in the case of mere presence, a subscrip-
tion request — he may become a victim of a flood of unsolicited messages
and interruptions, similar but perhaps even worse than the current situation
with electronic mail.

Confidentiality is an issue that is typically secured on a hop-to-hop ba-
sis by encrypting the network traffic. This still has issues for organizations
that are unwilling to trust a service provider for the security of their internal
or trusted client communication. Some technologies support end-to-end
encryption, yet even the knowledge of who are communicating (or are bud-
dies) may be considered confidential: a service provider in an architecture
where the server stores and manages contact lists for each client has a
very comprehensive database of personal contact networks. This prob-
lem can be partly overcome either by setting up in-house organizational
IMP networks, or by having the system support confidential peer-to-peer
communication.

A requirement that contradicts privacy has recently been raised regard-
ing the instant messaging systems. In some countries public companies

125

CHAPTER 5. MOBILE PRESENCE

are required, by law or due to other interest, to keep track of all their writ-
ten or electronic internal communication. The goal here is to preserve a
record of the internal communication so that it may be referred to later,
perhaps to audit the legality of business practices. To this end all internal
instant messaging traffic would have to be intercepted and stored. With in-
creasingly heterogeneous systems and mobile communications this may
prove technically challenging.

Mobility

The main issues with mobility are common to any technology applied to a
mobile environment: highly limited resources, multiple access points and
clients, unreliable communication, and ubiquity.

Recent developments in mobile devices have greatly pushed back the
limits of programmability and software complexity. While these devices
are still much more limited than desktop computers, they now allow de-
ployment of quite advanced applications from intelligent agents to video
games. Presence applications considered, modern devices are sufficiently
equipped to be an active part of a presence service, while user interface
limitations and reliance on battery power remain restrictive factors. Having
an application that frequently sends and receives data updates over the
air is a constant drain on battery power. Also, directly interacting with sys-
tems designed primarily for desktop usage may result in excessive traffic
amounts, since acceptable bandwidth usage is typically on a whole differ-
ent scale. Solutions like update collation, server-side filters, and context
awareness are some possible remedies for unnecessary wireless traffic.

The trend where small mobile devices become network-aware and pro-
grammable creates new challenges for presence applications. Making
several devices provide and consume presence data enables refining it to
be more informative and accurate. Instead of a single device providing a
limited view of the presence of a user, this view can be collated from multi-
ple sources. This presents the problem of managing a frequently changing
set of different client applications. The devices, ranging from a home PC
to a pager, may differ greatly in software capabilities and connectivity, yet
they should be able to collaborate dynamically.

Although ubiquity is usually thought of as desirable, it may well have
adverse effects in the case of presence services. A presence service user
in an ubiquitous environment must be aware of what kind of data about
his presence is constantly being broadcast into the network. The setting
should be such that a user is able to easily assert the limits of this data.

126

5.2. EXISTING PRESENCE TECHNOLOGY

5.2 Existing Presence Technology

There are several factions driving standard enabling technologies for IMP.
Most are consortiums driven by the software and telecommunication in-
dustries. This section provides a brief introduction to some key public
players developing IMP technology. Some existing technologies and prod-
ucts are also reviewed briefly.

5.2.1 Open Mobile Alliance

OMA (http://www.openmobilealliance.org) is an industry consortium
dedicated to developing common and open technologies for enabling de-
velopment of mobile services. OMA has assimilated such consortiums as
WAP Forum, Wireless Village (WV), and Location Interoperability Forum.

Wireless Village

Before merging into OMA the WV Initiative released two versions [WV02a,
WV02b] of a comprehensive IMP system, titled The Wireless Village Spec-
ification. This specification covers everything needed from access control,
server-to-server communication, and content sharing to different transport
bindings.

The WV architecture is a strict client-server model. It specifies two
client-server protocols, a full-feature XML protocol for networked applica-
tions and a limited-feature Command Line Protocol for more constrained
environments. The XML-based protocol uses a query-response model,
where each sent message package is a stand-alone XML document. Al-
though the WV specification was created largely by vendors in the field
of mobile communication, the XML protocol has been criticized for its av-
erage message size, which is large enough to cause noticeable delay in
service interaction.

The WV specification covers the interfaces between components —
protocols, functions, and data types — in detail, with little ambiguity. They
cover presence handling, messaging, contact list management, security,
and file sharing. This is important since components from different vendors
should be readily interoperable. The WV technology has been and is being
implemented by several vendors.

The integration of WV work to OMA has been completed and split
to proper working groups and committees. The WV specification is be-
ing replaced by the more recent OMA IMPS version 1.2 specification set

127

http://www.openmobilealliance.org
http://www.openmobilealliance.org

CHAPTER 5. MOBILE PRESENCE

[OMA03].

Location Interoperability Forum

Like Wireless Village, Location Interoperability Forum (LIF) started as a
standardization effort and was later merged into OMA activity. The work-
ing group strives to produce end-to-end specifications for mobile location
service interoperability. The Location working group (WG) has not been
chartered to specifically coordinate its work with either Messaging or Pres-
ence & Availability WGs. The architecture is to cover the primary aspects
of location services, application and contents interfaces, privacy and se-
curity, charging and billing, and roaming. Since location information is a
classical example of primary mobile presence information, it will be inter-
esting to see how well these two evolve to interoperate within OMA.

5.2.2 The Parlay Group

The Parlay Group is a multi-vendor consortium formed to de-
velop open, technology-independent application programming
interfaces (APIs) that enable the development of applications
that operate across multiple, networking-platform environments.1

The Parlay Group (http://www.parlay.org) is a vendor consortium
and the APIs they develop are for facilitating the engineering of mobile
software and integration of different systems and for driving innovation by
reducing the cost of developing applications. The work is intended to ben-
efit operators, service providers, and software vendors.

Presence and Availability Management Forum

The Presence and Availability Management Forum2 was a consortium of
companies aiming to define common interfaces for flexible management of
private presence related data. This covers the definition and handling of
identity, access control, and availability. The motivation is both to put the
user in control of his personal information and to provide a common way
for application developers of finding out, negotiating, and applying user
privacy preferences. The Presence and Availability Management (PAM)

1http://www.parlay.org/about/
2http://www.parlay.org/about/pam/index.asp

128

http://www.parlay.org
http://www.parlay.org
http://www.parlay.org/about/pam/index.asp
http://www.parlay.org/about/
http://www.parlay.org/about/pam/index.asp

5.2. EXISTING PRESENCE TECHNOLOGY

specification covers the architecture definition and a description of a gen-
eral level software API, without any language bindings.

The PAM Forum work was transferred to the Parlay Group PAM Work-
ing Group during the year 2003. The work to address the important issues
of identity, access control, and control domains continues therein.

5.2.3 Internet Engineering Task Force

The Internet Engineering Task Force is closing in on IMP from several
angles. This chapter discusses in detail only the Extensible Messaging
and Presence Protocol (XMPP), SIP for Instant Messaging and Presence
Leveraging Extensions (SIMPLE), and SILC technologies.

The IMPP working group has produced requirements and a reference
architecture design for IMP systems, as well as a common data format for
gatewaying between different systems [DAMV00, DRS00]. Several other
working groups (Application Exchange (APEX), SIMPLE, and Presence
and Instant Messaging Protocol (PRIM)) were charged with defining IMPP-
compliant concrete end-to-end protocols in collaboration with the IMPP
working group. Of these the APEX group produced a single draft, which
was later accepted as an informative RFC. The PRIM disbanded due to
inactivity without producing anything, and SIMPLE is close to producing a
set of IMPP-related RFCs for IMP.

Extensible Messaging and Presence Protocol (XMPP) and Jabber

The XMPP work is based on the existing and widely adopted Jabber pro-
tocol. The forthcoming XMPP RFC will address the problems, oddities,
and missing critical features in the original Jabber protocol, for example in
the fields of security, interoperability, and internationalization. In essence
evolving Jabber into a sound standard.

The Jabber protocol is an open and free protocol that is governed and
directed by the Jabber Software Foundation (http://www.jabber.org).
The Jabber protocol is generally considered moderately compact, easy
to implement, and very extensible. The core protocol is quite simple and
presents few requirements on network services (only the availability of
TCP/IP) and no requirements on middleware. This simplicity is attrac-
tive to new implementers and there is an abundance of different server
and client implementations. Client implementations are available even for
mobile (Connected Limited Device Configuration (CLDC)) devices.

129

http://www.jabber.org
http://www.jabber.org

CHAPTER 5. MOBILE PRESENCE

The Jabber protocol is essentially an asynchronous bidirectional
stream of two continuous XML documents, enclosing messages of simple
XML-formatted predefined types. The XML format provides three major
advantages:

• human readable protocol for development and debugging,

• ability to use existing XML libraries for parsing and generating the
protocol content, and

• virtually unlimited and safe message structure extensions through
standard XML extension mechanisms.

The way XML is used in the Jabber protocol is unconventional and
the corrections — in relation to both XML and other issues — that the
XMPP working group needs to make break backwards compatibility. This
compatibility issue is noted in the XMPP WG charter and the Jabber Soft-
ware Foundation (JSF) has declared that it is committed to support the
necessary modifications. The working group has submitted the core pro-
tocol specification [SA04b] for RFC approval and is continuing on more
detailed work, mainly considering security and interoperability [SA04d,
SA04a, SA04c].

The Jabber deployment architecture is a client-server model, in which
internetworked servers represent and manage user identities in their own
particular domains. User accounts are unique in a server domain and,
combined with the domain identities, supposedly globally unique. Jabber
supports resource specifiers for client identities; these are names that can
denote a specific service endpoint associated with a user identity. For
example “joe@bar.com/register” and “joe@bar.com/pda” refer to the same
identity but possibly different endpoints.

Although message traffic is not peer-to-peer, the Jabber developer
community has defined extensions by which two clients may negotiate the
establishment of a direct connection for arbitrary use like file transfer.

The XMPP/Jabber architecture and protocol choice has the advan-
tages:

• service network growth through open protocols and server domain
association through ordinary domain name lookups,

• clients can operate while behind a firewall and/or network address
translation (NAT), and

• domain server has control over the accounts in that domain, making
it easier to secure an organizational access point.

130

5.2. EXISTING PRESENCE TECHNOLOGY

The fact that the Jabber protocol is a relatively compact XML proto-
col makes it attractive for mobile use. Problems may arise if the mobile
platform does not support TCP connections. Also, the protocol poses no
limitations on the maximum size of a message: the originating end with a
broadband connection may pack along nice-to-have information that need-
lessly increases the message size. In both cases, a special mobile-aware
server and client might be able to provide ways for more effective commu-
nication and perhaps message content shedding.

SIP for Instant Messaging and Presence Leveraging Extensions

Session Initiation Protocol (SIP) [RSC+02] is a specification of a middle-
ware service for locating mobile and transient service endpoints and for
negotiating the establishment of various connected sessions like phone
calls or video transmissions. SIP has already been widely adopted — both
software and hardware products exist — in communication applications,
for example in telephone systems with built-in support for conference calls
and digital services. The IMPP-compliant SIP extensions needed for IMP
are being drafted to a RFC in the SIMPLE work group.

SIP provides services for endpoint locating, access control, message
packet routing, and highly configurable architecture by logical separation
of roles in a network. The SIP specifications also cover a general purpose
event service [Roa02]. These features make the addition of IMP services
relatively simple where SIP middleware is already deployed, which makes
it a very attractive IMP technology of choice for SIP adopters. Likewise the
use of SIMPLE requires the presence of SIP, which is an extra overhead
when deploying only an IMP solution. SIMPLE is defined as an event
package for SIP events.

In the SIMPLE design [Ros04] the logical components of the IMPP
reference architecture [DRS00] are specified as distinct entities. This al-
lows for example multiple presence information producers. A SIMPLE
Presence User Agent (PUA) produces information that is gathered by a
Presence Agent (PA) component. The PA handles all subscriptions by
Presence Clients (PCs) and sends them notifications when the presen-
tity’s state changes. Since communication is by events instead of RPC,
SIMPLE facilitates terminal mobility and service reconfiguration.

SIMPLE support for mobile terminals can be criticized on some issues.
First of all there is the relatively large message size. Where XMPP is
able to omit session context information from single messages, SIP does
not use such a transport session association, forcing redundant content

131

CHAPTER 5. MOBILE PRESENCE

in consecutive messages. SIMPLE message payload is XML, which is
generally considered problematic over wireless.

The second problem is that SIP messages are typically sent using User
Datagram Protocol (UDP) transport. This is a problem with many mobile
terminals that are not Internet-addressable. This problem can, however,
be circumvented using SIP proxies within the network infrastructure.

Secure Internet Live Conferencing (SILC)

SILC [Rii03a] is an instant messaging technology developed with security
as the highest priority. In ideology it has much in common with the IRC
technology but with a completely different design. Probably the motivation
for the SILC design has been the various problems in IRC networks, which
is apparent from the way IRC is used as a comparative reference in SILC
publications. SILC relies heavily on asymmetric encryption technologies.
SILC is intended to be standardized in IETF and the protocol drafts are
available [Rii04b, Rii04c, Rii04a, Rii04d, Rii03c, Rii03b]. SILC has not
been assigned a working group, but is being specified by the SILC Project
(http://www.silcnet.org).

The SILC service architecture is a ring of clusters. Each server belongs
to a cluster and can accept client connections. A router is a specialized
server that routes messages between the servers in that cluster. Each
router is connected primarily to two neighboring cluster routers and possi-
bly secondarily to other routers in the ring. Backup routers can take over
routing tasks when the primary router fails, causing only the client sessions
directly attached to the failed router to be lost.

SILC connections, both client-server and server-server, are persistent
and session-oriented. When connecting, the parties agree on a common
session key that is used to encrypt and sign the protocol messages. By
default each message is encrypted hop-by-hop. SILC also supports end-
to-end encryption but setting up key management is beyond the scope of
the SILC specification.

SILC developers claim mobile environment support with the compact
and compressed protocol. However, the abundant use of asymmetric en-
cryption may raise some issues. First of all is that asymmetric encryption
and decryption algorithms are processor-intensive. This may no longer be
an issue computing-time-wise but the CPU utilization may cause notice-
able battery consumption in small devices. The impact of encryption on
battery consumption might be an interesting research item.

132

http://www.silcnet.org
http://www.silcnet.org

5.2. EXISTING PRESENCE TECHNOLOGY

5.2.4 Service Integrators

Some existing IMP solutions are provided by service integrators. Most no-
table of these are AOL, Microsoft, and Yahoo!, each with their own propri-
etary technologies, networks, and large user bases. What is characteristic
of these kind of IMP solutions are

• close integration into other services from the same provider (e.g.
email),

• ability to rapidly push innovations by the method of client updates,

• free service, either funded by advertisements or offered as an attrac-
tor, and

• rich User Interface (UI) design: the provider has in theory control
over every different method of inputting and rendering information in
the system1.

Proprietary instant messengers are typically integrated to the other ser-
vices offered by the service provider, at least on the level of user account
management. Integration with services like video or audio conferencing
has also been quite popular.

The problem with evaluating proprietary solutions is the lack of public
detailed information. One approach is to deploy these solutions and then
evaluate them based on hands-on experience. Consequently this review
chapter focuses on open and publicly available technologies.

ICQ and AOL Instant Messenger

ICQ by Mirabilis was the first widely popular desktop presence service.
The product was since acquired by America Online (AOL). Both of these
provide an effective overview of the online/offline status of buddies (other
states are also predefined). They also offer effective reciprocal access
control and many different interaction tools (e.g. messaging, chat, file
transfer). AOL is infamous for its continuing efforts to block interoperability
bridging to other IMP systems.

1Defining a common basic state set or common rendering rules is often considered
counter-productive in protocol standardization.

133

CHAPTER 5. MOBILE PRESENCE

Microsoft Network Messenger, Windows Messenger, ThreeDegrees

Microsoft has been actively developing IMP technology in its products as
well as participating in standardization work. It currently provides three
different tools for what can be called presence or presence-enhanced ser-
vices. Hands-on evaluation of these tools was hampered by lack of plat-
form support. The oldest of the Microsoft tools is the Microsoft Network
Messenger, largely similar to the AOL Instant Messenger. The technology
in this product is proprietary and service interoperability requires a license
agreement.

Windows Messenger is a more recent product, shipped as part of the
Windows XP operating system. The tool apparently has a more versatile
architecture and should be able to connect to different networks, using dif-
ferent technologies (e.g. SIP/SIMPLE). Apparently the Windows Messen-
ger technology is being opened up in the sense that the server software is
offered for service integration licensing.

The latest Microsoft product is called ThreeDegrees. ThreeDegrees
integrates to the Windows XP desktop. It offers contact management and
content sharing in invitation-based private persistent groups created by
users. The tool has some IMP service integration with other Microsoft
products and offers an interesting kind of group sharing of content like
images and music. The group sharing of activity and media seem to be
the key features.

5.3 Discussion

There are some open issues regarding the possibilities and different facets
of presence, such as usability trade-offs, software architectural role, and
online identity. Past research projects, prototypes, and user studies have
provided valuable information on some of the possibilities and limitations
as well as raised questions in need of answering.

5.3.1 Prototypes

Research prototypes are important in both proving new innovations and
charting user reactions and behavior. The prototype listing in this section
consists of only those prototypes which are seen to have raised interesting
questions or provided interesting solutions.

134

5.3. DISCUSSION

Active Badge

One of the first notable prototypes of a presence service was the Active
Badge prototype [WHFG92] in 1990. This prototype used personal badges
that transmitted unique infrared signals periodically. These signals were
intercepted by infrared receivers that then fed the badge spottings to the
local computer network, enabling users to see where and when the badges
of other people have been seen. The initial problem that this was intended
to solve was that the local receptionist, when taking a call, needed to know
if a requested person could be reached and where.

In [WHFG92] the authors point out issues like

• access to location data must be restricted and users should not have
equal rights to all data (access control),

• the system should impose minimal overhead on the user,

• the prototyped system was vulnerable to managerial abuse, and

• a user could easily hide himself from the system at will.

At the time of the article the prototype had been in active and productive
use for 16 months, and the researchers had had the opportunity to meter
system usage and do user interviews, both of which indicated the useful-
ness and good user response of the system. The prototype managed to
prove the feasibility and usefulness of a cost-effective location presence
system.

NYNEX Portholes

The NYNEX portholes [LGS97] prototype was a particularly interesting
attempt to provide “an overview of a community through a matrix of video
images.” Their prototype presented many innovations in this kind of aware-
ness system, answering many issues about responsiveness and user pri-
vacy. The primary function of their software was to instantly determine if a
given person is in his office when there is no clear line of sight. Each user
terminal was equipped with a camera that took digital pictures of the per-
son in front of it at given intervals. These pictures were then collected to a
server which provided a combined view of the desks of different people.

One interesting aspect of the prototype was its unusual implementation
of reciprocity: not only are permissions reciprocal but a user can get infor-
mation about how often and by whom he is looked at through the portholes
— “when you look you will be seen”. According to their user interviews this

135

CHAPTER 5. MOBILE PRESENCE

additional reciprocity was valued, partly because the video images of self
are considered more personal than a simple online/offline state. Because
of this the prototype seemed to raise a lot of privacy concerns, which re-
sulted in many different technical means of improving user control over
privacy.

Hubbub

Hubbub [IWR02] is an interesting IMP system prototype for its novelties
in UI functionality. Its most notable innovation is to assign a short melody
for each user. When a user becomes available, this melody is played by
the clients of those people who have that user in their buddy list. When
a user becomes unavailable, the melody is played backwards. This way
a user would learn to associate a person with a particular melody and
be instantly aware of the comings and goings of that person, without any
distracting visual cues popping up on screen.

The prototype also presented a couple of other interesting innovations.
One was activity metering: the client making guesses on the current ac-
tivity of a user on that terminal. This activity rating can then be shown
on the clients of his buddies and used as a hint for routing instant mes-
sages. The content of a message was also made richer by introducing a
so called “Sound Instant Message (SIM)”, which is a melody of just a cou-
ple of notes denoting some pre-selected sayings like “OK”, “Bye”, or “Hi”.
In Hubbub these SIMs were used both in chat mode and as separate in-
stant messages. In the latter case the recipient hears the sound icon of his
friend and then the common SIM melody. Usability considered, it should
be a clear advantage that a user does not have to separately go look who
came online or who sent the message, or to be looking at a display at all
to be able to receive some messages.

The research team that created Hubbub metered system usage thor-
oughly, using several user interviews, polls, and quite a notable analysis of
the message traffic which was stored with the knowledge of the end users.
Using this data the researchers made conclusions on how the system was
used, typical interaction patterns, user experience, etc. Their findings sug-
gest both work logistic and social advantages.

5.3.2 Fundamental Trade-offs

IMP technologies always introduce a tradeoff situation between privacy,
awareness, and disruption [HS96]. The more detailed, and the more fre-

136

5.3. DISCUSSION

quently, presence information is provided, the more effectively it can be
put to use, and the less privacy the user has. Also, the more abundant the
delivered presence information becomes, the more likely it is to be non-
interesting and disturbing. Thus it is desirable for it to be possible to adjust
these tradeoffs to suit personal preferences and different situations. The
tradeoff situation can be softened by technical tools and good UI design.

If presence information is detailed and publicly available, it is very easy
for people and software to make use of it. However, whatever the level
of privacy required, it must be technically possible to both limit the audi-
ence of the information and the level of detail provided. To make these
limitations, someone — typically the user — has to make decisions on
who is given access to what information. A possibly-complex decision is
then needed prior to any utilization of the information. In limited controlled
communities like a workplace it might be feasible to centrally enforce the
decisions both to reduce the need for decision making and policy upkeep,
and to guarantee a level of awareness support within that community.

The level of disturbance an awareness system causes is a highly sub-
jective experience. Therefore it should be possible to personally adjust
the level and methods by which the awareness system intrudes to user
consciousness. The level of disturbance can be affected by the UI mod-
els [IWR02] and by actively filtering out events. These of course should
adapt to the current user needs: his mood, his social situation, the tasks
he is occupied with. The more this adaptation can be done by reliable
automation instead of direct user control is a challenge for proactive com-
puting research. Proactivity and context awareness are also a prominent
solution for making the presence data more meaningful.

5.3.3 Online Identity

The concept of online identity is not a simple one. Some systems require
reliable mapping of digital identification to a real-life person, while at the
other end of the spectrum the identity is only temporary, discardable, and
without any reliable link to any real person. The different uses of identity
could be considered to have two main attributes: the first is the reliability
of the identity, the second is the lifetime of the identity. An IMP system
may impose some model of identity by design, but it will be more usable if
the identity model is dynamic. Furthermore, a single person has different
online identities for different purposes, and likewise, several people may
share the same identity. The issue of online identity is a general problem
in the field of distributed applications and is yet to be resolved.

137

CHAPTER 5. MOBILE PRESENCE

Most IMP systems require some kind of user registration. Depending
on the usage conditions the user may have the choice of entering either
accurate or more or less bogus information. If a user may freely give bogus
information, the resulting identity can be anonymous but it is then impossi-
ble to provide a secure identity without some external authentication. On
the other hand, if the system requires strong authentication for access,
users may not be able to participate anonymously at all unless the sys-
tem offers some methods of anonymization. In cases where the server
stores buddy lists, preferences, or pending messages, it is required that a
user authenticates himself to access that data: while an effective and easy
solution, this excludes occasional and opportunistic use. For example, ac-
cess to Microsoft Messenger service requires a Microsoft Hotmail account,
while logging on to an IRC server usually requires no authentication.

As mentioned before, people have different identities for different uses
and the requirements for these vary greatly. Saying “Hi, I’m Bob and I like
your personality.” is of altogether different situation than “Hi, I’m Bob and
would like to close my bank account.” There is a great difference in require-
ments depending on the situation: how reliable must the authentication be,
and who should be convinced? Is reliable authentication a requirement for
the development of commercial services or mission critical applications us-
ing IMP technology? Can reliable authentication co-exist with anonymous
and opportunistic use?

Liberty Alliance

Liberty Alliance (LA) (http://www.projectliberty.org/) is a consortium
of over 160 organizations that aims to define an architecture and stan-
dards for federated network identity. The design starts with the notion that
online identities are facets of user identification. An identity may repre-
sent a person or a role within an organization. A single person will have
multiple identities that each have their domain of significance, for example
customer accounts in different vendor services. Some of these identities
are casual, some anonymous, some requiring a high level of authenticity.
One of the initial goals in the Liberty Alliance (LA) work is to provide a stan-
dard single-sign-on technology, enabling a user to authenticate securely to
different service providers only once in a session.

The LA key objectives are listed as [CHKT03]

• Enable consumers to protect the privacy of their network identity in-
formation.

138

http://www.projectliberty.org/
http://www.projectliberty.org/

5.3. DISCUSSION

• Enable businesses to maintain and manage their customer relation-
ships without third-party participation.

• Provide an open single-sign-on standard that includes decentralized
authentication and authorization from multiple providers.

• Create a network identity infrastructure that supports all current and
emerging network access devices.

Service providers maintain their own customer databases. A user can
opt-in to link different, service-provider-specific, local identities to a fed-
erated network identity. The group of service providers that share linked
identities and have established operational agreements that define trust
relationships is known as a circle of trust [Lib03]. Typically a circle of
trust consists of service providers and identity providers that have busi-
ness relationships and with whom users can transact apparently seam-
lessly. Organizations offering web services to users are considered ser-
vice providers. Identity providers are service providers that act as hubs of
identity federation, aggregating a circle of trust.

A user may have several federated identities in different circles of trust,
for example a work profile for an enterprise circle of trust and a home pro-
file for some consumer circle of trust. Authenticating to a circle of trust
typically enables automatic authentication to all service providers in that
circle. This authentication happens on demand. The LA specification al-
lows service providers to have different requirements for authentication
reliability and credentials required: when using a stricter service the user
may be asked for stronger proof of identity.

By default service providers have a very limited amount of information
about the other accounts of a user: typically only the identity of the user
in the other service in an identity federation. An identity provider can also
create an anonymous federation where the service provider doesn’t even
see the actual identifier of the user in the identity provider’s domain. An
identity provider can disclose properties of a user identity, such as address,
payment abilities, or full name, to other providers but must adhere to the
user privacy policies.

The identity providers — the hubs in the circles of trust — facilitate the
scalability of the LA architecture since authentication can be delegated
from one identity provider to another (if the two have a mutual trusted busi-
ness relationship). This way a circle of trust is not a rigid pre-determined
collection but an emergent network of service providers. This is both an
administration advantage and a security risk [PW03].

139

CHAPTER 5. MOBILE PRESENCE

The LA specification1 defines different protocols. The basic client-
provider protocol uses the functionality of a typical web browser, taking
advantage of HTTP redirection and possibly SSL and ECMAScript capa-
bilities. This has the advantage of not requiring any client side upgrades
to take advantage of the LA identity federation. There is also a separate
client-provider protocol that provides LA-aware applications a richer set of
operations and account management. The communication between ser-
vice providers uses a separate SOAP-based protocol.

5.3.4 Embedded Presence

Many existing presence applications are instant messaging systems, ded-
icated to the explicit listing of associates’s states and sending them mes-
sages. We are now beginning to see embedded presence applications:
applications that enhance their functionality by making use of available
presence information. A prime example of this is a telephone contact list
that is able to show the states of the contacts if there is presence informa-
tion available on them. In a similar way presence information cues can be
useful in other collaboration or communication tools: an email client show-
ing the state of the sender and the recipient, distributed edit and sketching
tools showing the activity of other participants [HD02], a work task man-
agement interface showing the readiness and location of available person-
nel, etc. In essence, the presence information is offered embedded within
the application in the context of the task at hand.

With the advent of IMP standards, the feasibility of these kind of im-
plementations is becoming better. There may arise a need for tools on
popular platforms for leveraging these standards through a uniform and
specialized API, making it easier to embed presence information to vari-
ous pieces of software.

5.3.5 Related Research

The current main active focuses in relation to presence are on context
awareness, usability, social issues, and different collaboration tools. Since
finding ongoing research projects through publications is not easy, the
projects mentioned here do not present any conscious selective set.

The Context project (http://www.hiit.fi/fuego/context/) at the
Helsinki Institute for Information Technology uses presence information to

1http://www.projectliberty.org/specs/

140

http://www.projectliberty.org/specs/
http://www.hiit.fi/fuego/context/
http://www.hiit.fi/fuego/context/
http://www.projectliberty.org/specs/

5.4. CONCLUSIONS

study models of automatic user context classification and proactive recog-
nition. The methodology used includes “qualitative user studies, data anal-
ysis algorithm development, and empirical testing in a prototype environ-
ment”. The project was launched in November 2002 and is scheduled to
last until the end of the year 2005.

Adaptive and Context-Aware Services (ACAS) (http://psi.verkstad.
net/ACAS/) at the Wireless Center of the Royal Institute of Technology in
Stockholm studies the areas of “Ad hoc service environments”, “Seamless
adaptive personal services”, and “Smart adaptive media”. These cover
such interesting topics as user context management, modeling and ontolo-
gies, proactivity, access management, mobility, and software component
architecture.

5.4 Conclusions

A mobile presence service intersects with many interesting and important
research areas. Integration of presence services with applications requires
solutions for supporting a network where interconnected heterogeneous
terminals publish presence information for each other. A presence service
is a promising enabler for proactive and context-aware tools and collab-
oration applications, but several issues remain to be addressed. Glob-
ality calls for interoperable standards, ubiquity calls for reliable privacy,
mobility calls for attention on heterogeneous environments and adaption
to computing context. The work regarding presence in the Fuego Core
project has created a very basic distributed presence service architecture
and software component interface. This prototype will be extended and
elaborated to a presence and context framework for possible application
development in later projects.

141

http://psi.verkstad.net/ACAS/
http://psi.verkstad.net/ACAS/
http://psi.verkstad.net/ACAS/

CHAPTER 5. MOBILE PRESENCE

142

Chapter 6

Host Identity Protocol

6.1 Introduction

The Internet protocol suite was originally designed with the assumptions
that hosts are static and trusted. These assumptions are not valid any-
more. Mobility has become increasingly popular. The number of users on
the Internet has grown exponentially. Everyone does not know everyone
anymore and thereby cannot trust everyone. Some extensions to the ex-
isting protocol suite are needed to keep up with the changes in the nature
of the Internet.

There have been many engineering efforts to redesign the Internet
protocol suite to meet the new requirements. SCTP [KMP+00] and Mo-
bile IP [Per96] are a few examples of these efforts. Host Identity Pro-
tocol (HIP) [MNJH04a] is a protocol among many others to extend the
current protocol suite.

This chapter introduces the background motivation for HIP and presents
a short overview of the HIP architecture. Related protocols, such as Mo-
bile IP, will be shortly presented. The current status of HIP will also be
reviewed.

6.2 Background

The concept of an endpoint identifier has been long neglected [Chi99] by
the Internet community in network and transport level protocols. Endpoint
identifier means the ultimate name of the end of a transport level con-
nection, and it is decoupled from the location of the endpoint. Neglect of
endpoint identifiers involves everyone using the Internet.

143

CHAPTER 6. HOST IDENTITY PROTOCOL

Figure 6.1: A simple end-host multihoming example

To illustrate the problem with endpoint identifiers, let us consider two
different scenarios: multihoming and mobility. The end host acts as a
traditional “client” using a light-weight terminal or a personal computer.
The end host accesses the Internet through a home network, which is
some kind of IP-based residential or wireless network.

In general, multihoming means that there are two or more different
routes to a destination host. The redundant paths can be used in pro-
tecting against network failures, enabling load sharing, and improving per-
formance [ABG02].

Multihoming can further be divided into two different types: host multi-
homing and site multihoming. Host multihoming means that the host has
two or more interfaces to the network, as in Figure 6.1. Site multihoming
means that the site has multiple connections to other networks, and hosts
in the network have only one connection to the network. An interested
reader should see [ABG02] for more information about site multihoming.

Mobility means that the client changes its topological location in the
network (Figure 6.2). This usually means that the client has to change its
IP address. The IP address can change for various reasons, e.g. if the
host roams to another network or its Dynamic Host Configuration Proto-
col (DHCP) lease expires. Mobility also means that existing connections
should not be torn down, although a small delay is usually involved in
changing the IP address in a real-world situation.

Transport level connections in the Internet are formed commonly with
Transport Control Protocol (TCP) [Pos81] or UDP [Pos80]. Both TCP and
UDP use IP addresses as a part of their endpoint identifiers, that is, they
share the same address space. The reason for sharing the same address
space was a design decision based on the requirements of networks when
the Internet was still highly under development: the hosts were quite static
and there was no need to add a new address space for transport level con-
nections. The new address space would have been redundant, because
the hosts were static, and it would have involved an additional burden for
routing. Routing would have been more complex because a mapping of

144

6.2. BACKGROUND

Figure 6.2: A simple mobility example

identifiers from the transport level to the network level (and vice versa)
would have needed to be introduced.

Using the same address space at both the network level and the trans-
port level has introduced problems in multihoming and mobility [Chi99].
Here are two examples from the IPv4 world to further illustrate the prob-
lems:

End-host multihoming There is a client (marked with a monitor) with one
network interface (10.0.0.1) and a server (marked with a PC tower)
with two network interfaces (192.168.0.1 and 192.168.0.2) in Fig-
ure 6.1. Consider a situation where the client has established a trans-
port level connection with the server and the connection is routed
from 10.0.0.1 to 192.168.0.1. Now, the interface on 192.168.0.1
breaks down for some reason. The obvious solution would be to
reroute the connection via 192.168.0.2, but this would break the con-
nection in IPv4 or IPv6 without some kind of mobile IP support.

Mobility If a host moves to another network (Figure 6.2), it has to change
its IP address. Again, all transport level connections will be torn down
when the IP address changes, because the connection is bound to a
static IP address.

Both of the previous examples have a common problem: changes in
network level routing also affect end-to-end transport-level connections.

145

CHAPTER 6. HOST IDENTITY PROTOCOL

The reason for this is that the transport level uses the same identifiers
(IP addresses) for hosts as the network level. This causes a problematic
dependency for the transport level on the network level and is one of the
major reasons for multihoming and mobility problems.

There are many solutions and workarounds for multihoming and mo-
bility problems. Mobile IP [Per96] and SCTP [KMP+00] have been engi-
neered to tackle the problems, just to mention a few alternatives. HIP is
one of many alternatives. It offers a new namespace for identifying hosts
independently of network-level routing, thus solving many of the mobility
and multihoming problems. HIP also uses public-key cryptography to re-
duce various network attacks and to make internetworking safer.

6.3 Architecture Overview

6.3.1 Host Identity

Endpoint identifier issues were shortly introduced in section 6.2. The end-
point identifier in HIP is called a Host Identifier (HI). The networking stack
of the host has one or more HIs that are used for identifying transport-layer
endpoints in a location-independent manner. Two types of HIs exist: “well-
known” public HIs (can be published in Domain Name Service (DNS) or in
some other known place) and anonymous.

HIs are permanently integrated with security, because they are crypto-
graphic in nature. The best HI is the public key part of an asymmetric key
pair. HIs based on a public key can be used in HIP packet authentication
and for protection from man-in-the-middle attacks. A HIP implementation
must support at least Digital Signature Algorithm (DSA) [NIS94] as a cryp-
tographic algorithm for HIs

Every host typically has at least one HI. It is, however, recommended
that each host has also an anonymous HI that it can use if needed. HI
public keys could be stored using Light Weight Directory Access Protocol
(LDAP) [HM02] or the DNS [Moc87]. Anonymous HIs should not be stored
in the DNS (otherwise they would not be anonymous). HIs are potentially
long, so they are not used directly in Internet protocols.

HIs are long because asymmetric cryptographic algorithms tend to use
long key material. Therefore HIs are not suitable for socket API calls or
packet source and destination addresses. A more compact representation
for HIs in HIP is described in subsection 6.3.2.

146

6.3. ARCHITECTURE OVERVIEW

6.3.2 Other Representations of Host Identity in HIP

A HIP protocol implementation using only HIs would be inefficient because
public keys tend to be long and inserting a long public key into a packet
causes too much overhead. A public key could also be of variable length
and support for variable-length public-key identifiers would be harder to
implement. Instead, a hash over the public key is used, producing a 128-
bit field called a Host Identity Tag (HIT).

A HIT identifies a HI in an efficient way and can be used for further
negotiation between the end hosts. A HIT should be statistically unique
but collisions are still possible. A HIT should be interpreted as a hint of the
correct public key in a collision situation.

A Local Scope Identifier (LSI) is even shorter than a HIT. A LSI is a 32-
bit localized representation of a HI. LSIs exist mainly to support backwards
compatibility with the IPv4 API.

The fixed lengths of LSIs and HITs correspond exactly to IP address
lengths in IPv4 (32 bits) and IPv6 (128 bits). This is not at all a coincidence
but a careful design choice to support existing TCP/IP architectures. Fixed
length eases protocol coding and control of packet sizes, and the format is
suitable for underlying protocols despite the identity technology used.

For example, to make a TCP connection to a host using IPv6, one must
create a socket and connect the socket to the peer host’s IP address and
port. The connection mechanism and API calls could be transparently the
same in HIP-aware end hosts, but the IP address would be interpreted as
a HIT. This means that the semantic meaning of the API call is changed in
HIP.

6.3.3 Base Exchange

Before HIP connections can be established between hosts, they need to
be authenticated. This is the main purpose of the base exchange. During
the connection establishment procedure information required for creating
IPsec Security Associations [KA98a] is also shared.

After the base exchange is finished successfully, both hosts have au-
thenticated themselves to each other and set up their security associa-
tions. After this, the connection continues using the newly created IPsec
Security Associations.

The base exchange is similar to the TCP connection establishment
procedure [Pos81]. TCP has a three-way handshake to establish state
between two hosts. The HIP protocol needs four packets to establish state
between two hosts. The base exchange has been carefully designed to

147

CHAPTER 6. HOST IDENTITY PROTOCOL

avoid possible denial-of-service and man-in-the-middle attacks. TCP and
UDP [Pos80] also have protection when HIP enables the use of Encapsu-
lating Security Payload (ESP) [KA98b] via Security Associations.

6.3.4 Security and Privacy

The HIP protocol brings security into the existing TCP/IP architecture.
First, the end hosts are authenticated using the base exchange. The
public keys of the hosts can be verified from the DNS. The connection
is encrypted with ESP after the authentication is done. Privacy issues are
handled in the protocol as well. Anonymous HIs [MNJH04a] are specified
to provide almost anonymous access to the network.

6.3.5 Multihoming

A multihomed host has more than one network interface, each of which
is connected to a possibly-different network. These interfaces therefore
have different addresses. Due to this difference in addresses, a multi-
homed host seems to be located in different locations within the network.
Its operating system keeps track of the mapping between an address and
its corresponding interface.

End-host multihoming can be attained quite simply using HIP. In the
HIP namespace, mappings are created between IP addresses of all inter-
faces and a single HIs. Every IP address is mapped to the same HI. IP
addresses present a topological location within the network, and the HI is
used as the endpoint. Now the multihomed host looks like it is located in
one place when communicating using HIP.

6.3.6 Mobility

There are different types of mobility, such as network and end-host mobil-
ity. This section concentrates only on end-host mobility issues with HIP.

The purpose of mobility becomes clear when an end host changes its
IP address after it has roamed to another network, for example. Before
the roaming, all transport layer connections between the end host and its
peers are bound to IP addresses in the previous network. Effectively this
means that the live connections are torn down because the IP packets
associated with the connections are routed to the wrong network and IP
address. End-host mobility support can prevent this kind of situation and
keep the connections alive.

148

6.3. ARCHITECTURE OVERVIEW

Mobility in HIP is quite straightforward if Dynamic Updates in the Do-
main Name System (DNS UPDATE)[Wel00] is available [Mos01]. The
mapping of HIs and IP addresses is updated rapidly in the DNS and all
packets will be routed to proper IP addresses. Difficulties arise when DNS
UPDATE is not used and mobility management has to be handled differ-
ently.

Mobility can be divided into three different categories from the HIP point
of view depending on the party who changes its IP address. Initiator and
responder mobility will be discussed in this section. The term “initiator”
refers here to the host initiating a connection to a peer host. The peer host
that will receive the connection attempt will be referred to as the “respon-
der”. The third kind of mobility is about the double jump problem and it
means that both end hosts change their IP addresses at the same time.
The double jump problem is not discussed here and a reader interested in
the topic should refer to [Nik02].

Initiator mobility is simple. The responder can accept a HIP or an ESP
packet, whose Security Parameter Index, SPI [KA98a] is known to HIP,
from anywhere. The IP address is then used only for routing the packets
back. The initiator may also send HIP UPDATE packets containing its new
addresses in a REA parameter to the responder to tell the initiator’s new
location.

In responder mobility, the initiator needs to know the location of the
responder. This method uses a packet forwarding agent which is also re-
ferred to as a rendezvous server in the literature. The packet forwarding
agent acts as a virtual interface of the responder [Nik02], representing the
IP address of the responder. Initially, the responder sets up a HIP-based
Security Association with the packet-forwarding agent. The responder up-
dates its IP address continuously to the packet-forwarding agent using HIP
packets containing readdressing (REA) parameters.

The initiator sends its initial HIP packet destined to the responder’s HIT.
The IP address in the packet is not the actual IP address of the initiator but
the IP address of the forwarding agent. The forwarding agent forwards
the packet to the responder’s current location. After this packets are ex-
changed directly between the initiator and the responder, and responder
mobility is handled like initiator mobility. The packet-forwarding agent is
discussed in more detail in [Mos01].

149

CHAPTER 6. HOST IDENTITY PROTOCOL

6.3.7 Rendezvous Server

In order to start the HIP exchange, the initiator node has to know how to
reach a mobile node. Although Dynamic DNS could be used for this func-
tion for infrequently moving nodes, an alternative to using DNS in this fash-
ion is to use a piece of static infrastructure called a HIP rendezvous server.
Instead of registering its current dynamic address to the DNS server, the
mobile node registers the address(es) of its rendezvous server(s). The
mobile node keeps the rendezvous server(s) continuously updated with
its current IP address(es). A rendezvous server simply forwards the initial
HIP packet from an initiator to the mobile node at its current location. All
further packets flow between the initiator and the mobile node. [MN03]

The current situation is that there are no publicly known implementa-
tions of the rendezvous server. In practice, this means that its specifica-
tion might change a bit, and thus it remains an open issue for the time
being. L. Eggert presented in [Egg04] different scenarios and variations of
the rendezvous server. The primary point of concern in his Internet draft
is, how do non-HIP-enabled and HIP-enabled hosts interact without prior
knowledge of each other’s capabilities?

It is expected that this part of the HIP infrastructure will change or will
be clarified during this year. As the base HIP draft stabilizes, work will
concentrate more on the infrastructural elements of the HIP architecture.

6.3.8 Native Application Programming Interface

Nobody has shown a complete specification for an application program-
ming interface for HIP. Partial work has already been done [Mos01] in the
form of a legacy API. The legacy API requires only minor changes in ap-
plications and therefore it cannot utilize all the properties of a HIP-enabled
networking stack. Work on the “native HIP API” [Kom04] has been finished
at the Helsinki Institute for Information Technology, and the results of the
experimentation will be used to form a draft for the IETF.

The most significant change of the native API is the fact that it uses
public-key identities in the user-space socket API. A direct benefit of this is
that the users can provide their own public key identifiers to the networking
stack. This means that the identities are no more bound to just hosts; they
can be bound to users, processes, or groups. There are also plans behind
the scenes to state in the next version of the HIP drafts that DNS should
really store public keys instead of HITs, so the explicit public key handling
in the native HIP API may come in handy.

150

6.3. ARCHITECTURE OVERVIEW

The native API also utilizes the HIP layer better than the legacy API.
Anonymous identities, opportunistic HIP, and certificate handling can be
supported explicitly from the native API. Quality of Service can also be
controlled with unified policy management interfaces. Some degree of
multi-protocol compatibility has been planned for the native API to support
other protocols that make the separation between endpoint identifiers and
locators like HIP does.

6.3.9 Advantages and Disadvantages

In this section, we list both the advantages and disadvantages of HIP
shortly. Let us begin with the advantages:

• HIs provide consistent names for hosts regardless of how they con-
nect to the Internet.

• Cryptography-based public-key-like names are difficult to steal.

• HIP separates the routing and host namespaces with no effect on
routability. The role of the IP address changes to simply a packet-
forwarding namespace.

• The protocol is very simple and bandwidth-conservative; there is no
per-packet overhead beyond that of IPSec after the Security Associ-
ations (SAs) have been established.

• The base exchange provides a secure authentication for the hosts.

• Both the key exchange and the initialization of IPsec security asso-
ciations for use with HIP are relatively lightweight. This may reduce
the need for complex external infrastructures such as Internet Key
Exchange (IKE) [HC98] even though HIP does not provide all the
same functionality as IKE.

• Forwarding at rendezvous server does not need a lot of processing
power (only a couple of packets per request). One server can easily
handle a large number of hosts.

• HIP implements a “stateless” connection handshake to provide de-
nial-of-service resilience [Hen03] especially against malicious initia-
tors.

• HIP also provides privacy support [Hen03] in the form of anonymous
identities.

151

CHAPTER 6. HOST IDENTITY PROTOCOL

• HIP is tightly integrated with IP security protocols [Hen03].

• The HIP solution for multihoming is more natural than many other
existing ones [Hen03].

Potential disadvantages of HIP are

• Decoupling of internetworking and transport layers and adding a new
host layer might require changes to the existing APIs and applica-
tions.

• Locally created anonymous HIs make resolvability very difficult for
other hosts.

• Asymmetric cryptography consumes the computing capacities of end-
hosts. This presents a problem for low-performance devices such as
handhelds and mobile devices [Kom02].

• Changing HIP to support multicast may require a substantial amount
of work.

• Dynamic binding of HITs to IPv6 addresses may have some security
vulnerabilities that haven’t been found yet [Nik02]. The forwarding
agent could be another source of potential vulnerabilities.

• Mobile IP and other related protocols have been around for a while
and they have the advantage over time.

• HIP requires either dynamic DNS updates or additional network in-
frastructure to allow hosts to find mobile servers [Hen03].

• For practical use, HIP requires Public Key Infrastructure (PKI) or ex-
tensions to DNS, unless operated in anonymous mode [Hen03].

• HIP requires changes to networking stacks and APIs at both ends of
the connection [Hen03].

• Unless applications are HIP-aware, HIP has problems if IP addresses
are used in the application data stream [Hen03].

• DNS-centric approaches to end-host mobility require a reduction in
the TTL for records for mobile nodes, and hence a greater load on
root nameservers [Hen03].

152

6.4. RELATED WORK

• If HIs are used to identify hosts, the loss of host aggregation based
on network prefix could cause scaling problems for access control
lists containing a network address and mask [Hen03].

• There is little implementation and operational experience [Hen03].

• The overhead caused by the handshake is high for short transac-
tions [Hen03].

6.4 Related Work

Some protocols have some of the same kind of functionality as HIP has.
Examples of these protocols are Stream Control Transmission Protocol
(SCTP) and Mobile IPv6.

6.4.1 Mobile IPv6

Mobile IPv6 tries to make mobility transparent to applications using higher-
level protocols. Mobile IPv6 also addresses security issues [Per96].

Mobile IPv6 can be seen as an alternative to HIP and vice versa al-
though both Mobile IPv6 and HIP tackle somewhat different problems.
Mobile IPv6 does not currently address end-host multihoming, and it is
still trying to provide a scalable security solution [NYJW04, YJWN02].

6.4.2 MobIKE

Mobile IKE (MobIKE) protocol [Kiv04] tries to enchance IKE version 2
with mobility support. The main scenario concerns Virtual Private Net-
work (VPN) users moving from address to another without re-establishing
SAs as stated in the IETF working group description. Some co-operation
with the SCTP is also planned.

6.4.3 SCTP

SCTP provides a means for each SCTP endpoint to provide to the other
endpoint (during association startup) a list of transport addresses (i.e. mul-
tiple IP addresses in combination with an SCTP port) through which that
endpoint can be reached and from which it will originate SCTP packets.
The association spans transfers over all the possible source/destination

153

CHAPTER 6. HOST IDENTITY PROTOCOL

combinations that may be generated from each endpoint’s lists [KMP+00].
Connection setup with SCTP is similar to HIP: a cookie exchange mech-
anism is also used during the connection setup procedure. SCTP uses
cryptographic hash functions for data integrity checks.

6.5 Current Status

6.5.1 Standardization Status

Robert Moskowitz, the original author of HIP, has released three Internet
Drafts on HIP: [MNJH04a], [MN03], and [Mos01]. They describe the HIP
architecture, namespace issues, and implementation aspects of HIP. Later,
Pekka Nikander has updated the draft [MNJH04a] to newer versions. As
of this writing, the latest draft [MNJH04a] is managed by a new editor, Petri
Jokela. The latest draft also has a new author, Thomas Henderson. The
mobility and multihoming draft [NA04a] was updated.

Two HIP-related working groups were formed in the IETF in 2004. The
HIP WG concentrates mainly on the development of the current drafts, em-
phasis being on the base specification which is one of the working group
items. The other working group is HIPRR, the HIP Related Research work-
ing group. HIPRR deals with ideas developed further from the base spec-
ification, such as using Distributed Hash Tables within HIP, for example.
HIP does not have any official RFCs yet.

In July 2004 L. Eggert released an updated draft of Design Aspects of
Host Identity Protocol (HIP) Rendezvous Mechanisms [EL04b]. Quoting
the draft “it discusses design aspects of rendezvous mechanisms for the
Host Identity Protocol (HIP). Rendezvous mechanisms, such as HIP ren-
dezvous servers, improve operation when HIP nodes are multi-homed or
mobile. They can also facilitate communication between HIP and non-HIP
nodes. Possible rendezvous mechanisms differ in performance, compati-
bility, and impact on the HIP and Internet architectures.”

A draft by L. Eggert on rendezvous extensions was also released, Host
Identity Protocol (HIP) Rendezvous Extensions[EL04a] in July 2004. The
draft discusses rendezvous extensions for the Host Identity Protocol (HIP).
Rendezvous mechanisms extend HIP for communication with HIP Ren-
dezvous Servers. The draft motivates the need for rendezvous mecha-
nisms, and it describes the protocol extensions in detail.

An initial draft on HIP NAT issues was published in February 2004. The
draft, Problem Statement: HIP operation over Network Address Transla-
tors[SQ04] tries to covers issues when HIP is used between different ad-

154

6.5. CURRENT STATUS

dress realms having Network Address Translators (NATs) between them.
Two main areas in the draft are HIP communication across NATs and HIP-
initiated IPsec-based data transmission across NATs.

6.5.2 HIP Projects

HIP is currently being developed in five independent projects. The Host
Identity Protocol in Linux (HIPL) (http://www.gaijin.iki/hipl/) project
currently has two members at the Helsinki Institute for Information Tech-
nology. Andrew McGregor is developing a cross-platform version (http://
www.sharemation.com/adm01bass/pyhip/pyhip-2003-11-15.tar.bz2) in
the Python programming language, but due to his time constraints the de-
velopment has been slow and the implementation is not up to date with the
latest specifications. Ericsson Research is working on an implementation
for NetBSD (http://hip4inter.net/), Boeing is developing a Linux imple-
mentation, and Julien Laganier at Sun Microsystems in currently working
on a BSD implementation.

6.5.3 Meetings

Interoperability Tests prior to IETF

HIPL has been in co-operation with Ericsson’s HIP for NetBSD Project
team from the beginning of the implementation work. Several interoper-
ability tests have been performed to test each project’s own implementa-
tion against the other implementation in order to prove the implementations
correct and gain more experience on the subject. During the interoperabil-
ity tests several ideas were raised on the problematic areas, and some
good ideas were even incorporated into future drafts. Interoperability tests
have been done in approximately every 3–5 month interval.

HIPL has also done some short interoperability tests with Julien La-
ganier from Sun Microsystems in late 2003. Sun’s implementation was
still in very early development at that time, so the tests were not fully suc-
cessful, but they were still promising.

55th IETF

The 55th IETF meeting in Atlanta in November 2002 proved that the HIP
specifications are feasible to implement. Many different HIP implementa-
tions were able to establish the base exchange almost completely, even

155

http://www.gaijin.iki/hipl/
http://www.gaijin.iki/hipl/
http://www.gaijin.iki/hipl/
http://www.sharemation.com/adm01bass/pyhip/pyhip-2003-11-15.tar.bz2
http://www.sharemation.com/adm01bass/pyhip/pyhip-2003-11-15.tar.bz2
http://www.sharemation.com/adm01bass/pyhip/pyhip-2003-11-15.tar.bz2
http://hip4inter.net/
http://hip4inter.net/
http://hip4inter.net/

CHAPTER 6. HOST IDENTITY PROTOCOL

though some workarounds had to be made because some severe bugs
were found during the testing. Projects and persons involved in the test-
ing were HIPL, Ericsson, Boeing, Andrew McGregor (Indranet), and Tim
Shepard. HIPL had only an IPv6-based implementation, Boeing had only
an IPv4-based implementation, and Ericsson and Andrew McGregor had
support for both the IPv4 and the IPv6 protocols.

56th IETF

Between the 55th IETF meeting and the 56th in March 2003 the main pur-
pose of the HIPL project was to fix the bugs found in the 55th meeting.
Most of the bugs were fixed, so testing during the 56th meeting was more
straightforward than in the 55th. Only some small details were left to be
tested when the 56th meeting was over. HIPL could test ESP connections
only with NULL crypto enabled, Ericsson succeeded with some other al-
gorithms than NULL crypto. It was also noticed that the interest towards
HIP is growing.

During the 56th IETF meeting, the HIP-related mailing list1 has re-
ceived more than two or three times the amount of messages compared
to a year ago. The HIPL group also discussed an API proposal with the
Boeing group but no consensus was established because of contradicting
views. Discussion about the API will continue and merging the best of both
views seems to be a reasonable solution.

57th IETF

In addition to HIPL only one of the HIP implementors, Andrew McGregor,
was present at the meeting. The interoperability tests concentrated on the
HIP base exchange and were successful. Some issues on the HIP native
API were also discussed with Andrew McGregor and Tim Shepard from
the Massachusetts Institute of Technology.

58th IETF

The first HIP Birds of a Feather (BoF) was held in the 58th IETF. The goals
were to introduce the current status of HIP and discuss forming a working
group. The HIP base protocol was considered more or less ready, with
more work needed on infrastructure issues.

1http://lists.freeswan.org/pipermail/hipsec/

156

http://lists.freeswan.org/pipermail/hipsec/
http://lists.freeswan.org/pipermail/hipsec/

6.5. CURRENT STATUS

The BoF included a demonstration of the Ericsson and HIPL implemen-
tations. The main purpose of the demonstration was to show that the base
exchange works between these two different implementations. This setup
used IPv6. The demo was successful. Ericsson also had a mobility and
application interoperability demo using their own implementation.

Boeing gave a presentation “Potential Applications of HIP at Boeing”
which briefly described their plans of possibly using HIP all over their in-
tranet. Their goal was to test HIP deployment on a larger scale than it has
been tested so far.

Forming of the HIP WG was confirmed. The scope of the proposed
charter was perceived as too ambitious for a working group. Several peo-
ple voiced the opinion that the working group should focus on making a
minimal usable solution, or a core solution, and the rest of the work should
probably be moved to an IRTF research group.

59th IETF

Interoperability tests with Sun and Boeing implementations were success-
ful. Andrew McGregor from IndraNet did not participate.

Miika Komu had unofficial discussions on his HIP native API topic. He
got feedback on the current early API implementation experiences.

Two HIP-related events were scheduled in the 59th IETF: Host Identity
Protocol BoF (HIPBOF) and HIP Related Research Group (HIPRR).

The planned HIPBOF agenda had the following items:

• draft and issue status (adopt only the base specification as a WG
draft at this point of time)

• WG quality control plan

• Open issues in the base specification

• Resynchronization

• Reject mechanism

• Open issues in the mobility and multihoming specification

• Return routability test

The HIPRR agenda had the following items:

• Current RG status

157

CHAPTER 6. HOST IDENTITY PROTOCOL

• HIP and related research elsewhere

• Potential research areas

• Coverage of specific topics

60th IETF

The 60th IETF was held in San Diego. The agenda for the IETF con-
sisted of interoperability testings, and the working group and research
group meetings.

Interoperability Tests Interoperability tests of the HIIT HIP implemen-
tation against Ericsson’s and Boeing’s implementations were successful.
Andrew McGregor’s Python-based implementation is badly outdated and
there is no guarantee that his implementation will be updated in the future.
Julien Laganier (Sun Microsystems/INRIA) did not have the time to update
his implementation for the meeting.

It is possible that HIPL may have interoperability tests against a Win-
dows implementation some time in the future if one will be available. Boe-
ing has initially planned to start implementing HIP for Windows.

HIP Working Group Meeting Petri Jokela, the editor of the base draft,
began with a discussion of the base specification draft [MNJH04b]. The
specification has matured because only a few minor technical changes
were introduced in the latest version. Erik Nordmark proposed a solution
to the problem in which a host loses its state when it boots. This proposal
will be added to the next version of the draft.

Another change was also suggested to the base draft. Albeit this oc-
curred after the meeting, it is worth mentioning here. Pekka Nikander
also suggested another change to the base draft in the mailing list. He
suggested making HIP SIGMA [Kra03] compliant to ensure the security
properties of the HIP base exchange.

Thomas Henderson, a chair of the HIP research group, continued with
the topic of “making HIP multi6 friendly”. The IETF Multi6 working group
is designing a site multihoming solution based on IPv6. One of the goals
of the multi6 working group is that the solution should not have weaker
security properties than the current Internet design has. As work for the
solution is at its initial stages, the working group has also considered HIP
as a basis for their solution because of the similarities in the goals of the

158

6.5. CURRENT STATUS

working groups. The security properties of HIP are relatively strong, and
perhaps even too strong from the viewpoint of multi6, so a light-weight-HIP
proposal [NH04] has been written. However, multi6 compatibility will not
be considered in the base specification for the time being.

Miika Komu from HIIT gave a presentation on the legacy HIP socket
API. The nature of the presentation was informal. Its purpose was to pre-
pare IETF participants for the following HIP research group session, which
included a presentation of an extended HIP socket API. In short, the legacy
HIP socket API is a backwards compatible socket API for legacy applica-
tions. Legacy applications, in turn, are those applications that are difficult
or even impossible for their developer or maintainer to modify in order to
make them use HIP.

The legacy API was divided into three categories: referral, transparent,
and native API. The referral-based API is the most backwards compatible
API, as the userspace Application Identifier (AID) is an Internet Protocol
(IP) address. This way, applications can safely inform each other about
their IP addresses. FTP-based applications are a typical example of this
category. The transparent API is somewhat similar to the referral API, as
the maintainer of the application does not have to modify the application
code at all. However, the AID is a HIT instead of an IP address in the
transparent API. In a way, the transparent API is an intermediate form of
the referral and native APIs. The application developer must update the
source code in order to enable HIP in the application. After the update, the
application is HIP-aware, and thus can control the HIP layer better.

Thomas Henderson continued with a discussion on the HIP mobility
and multihoming draft [NA04a]. First the design goals of the updated
draft were presented: session persistence across multiple locators, ad-
dress verification, possibility of locator change with or without rekeying,
concept of a preferred address, announcing additional locators in the base
exchange, and middle box issues. The draft does not cover rendezvous
servers or transport layer issues. The most notable change in the updated
mobility draft is the use of the UPDATE mechanism instead of the old style
REA packets. Also the concept of address group was removed. Imple-
mentation experience would help to solve some open issues left in the
draft, and indicate if the proposed design is feasible to implement. HIP for
Linux (HIPL) is planning to implement some level of support for this new
mobility draft. It is hoped that this will help to understand possible design
flaws and propose better ways to improve the specification.

The effort for specifying rendezvous mechanism was split into two.
Legacy rendezvous mechanisms [EL04b], i.e. from a HIP-enabled node
to a non-HIP-enabled node is a work in progress in the research group.

159

CHAPTER 6. HOST IDENTITY PROTOCOL

In the working group session, Julien Laganier presented the HIP-to-HIP
rendezvous mechanism draft [EL04a] for the first time.

The main purpose of the HIP-to-HIP rendezvous server is to forward
initial I1 packets originating from a correspondent node to the mobile node.
As such, it provides a faster alternative to dynamic DNS updates because
the only IP address needed to configure to the DNS is the address of
the rendezvous server, which is typically long-lived. The communication
between the mobile node and the rendezvous server can be protected by
using HIP itself. Later, the full HIP SA can be transformed into a “soft
association” that does not consume as much resources as a full HIP SA.

The rendezvous extensions needs more implementation experience.
The HIPL implementation at HIIT already has an experimental implemen-
tation of a HIP-to-HIP rendezvous server.

Julien Laganier continued with the HIP DNS extensions draft [NL04].
He proposed some technical enhancements on the objects that can be
stored in the DNS. For example, full HIs can be stored in the DNS instead
of just HITs. Also, distinguishing rendezvous server locators from “nor-
mal” host locators is possible because the rendezvous server locators are
stored in their own dedicated Resource Records (RRs).

In the HIP DNS extensions presentation, Julien Laganier proposed
some technical questions to the HIP community. The exact format of the
identifiers and locators is still an open issue. Especially the relationship
between a HI and a locator is many-to-many in the current scheme pro-
vided by the draft, but it would be possible to constrain this relationship
with different kind of RRs. For example, the locators can be indexed with
HITs or sequence numbers to fix a HI to a certain locator. In effect, this
would change the relationship between a HI and locator to one-to-many.

HIP Research Group Meeting The HIP research group session began
with a presentation by Miika Komu from Helsinki Institute for Information
Technology (HIIT) and Julien Laganier from Sun. The topic was native
APIs for HIP [Kom04]. To use the APIs, developers have to modify the
applications. As a consequence, the applications become HIP-aware, and
can control the HIP layer better. For example, it is possible for the applica-
tions to provide their own identities to the host.

Martin Stiemerling from NEC Europe Ltd. continued with a discussion
of the HIP relationship with NATs. The use of NATs was not promoted
because HIP does not work well with NATs; either one or the other needs
to be modified. HIP may have to be run on top of UDP in the future when
IPv4 is being used.

160

6.5. CURRENT STATUS

Lars Eggert from NEC gave a presentation of the HIP rendezvous
draft [EL04b]. The draft focuses on the possibilities of rendezvous servers,
i.e. it is not on a technical level yet. Marco Liebsch from NEC has written
some sections to the draft related to location privacy. The draft still needs
more feedback from HIP community.

Michael Walfish from MIT presented some ideas of a layered naming
architecture [BLR+04]. In the proposed architecture, the identifier name-
spaces are flat, and there are more identifier layers than in the current
Internet architecture. For example, there are user-level descriptors (e.g.
email addresses, search strings), service identifiers (e.g. HTTP) and end-
point identifiers (e.g. HI). The new layering structure would benefit from
HIP mobility and multihoming. Also, it would make the co-existence with
middle boxes easier. For example, demultiplexing with NATs would be
based on endpoint identifiers rather than overloaded port numbers.

Karthik Lakshminarayanan from University of California, Berkeley pre-
sented an overview of Internet Indirection Infrastructure (i3) [SAZ+02]. It is
a forwarding infrastructure that allows users to control routing and naming.
i3 also provides a lookup service based on DHTs. It provides support for
mobility, multicast, and anycast. NAT traversal works transparently with i3
as does secure VPN access. Security is not forgotten either: packets can
be routed through an Intrusion Detection System (IDS) node, and protec-
tion against certain types of Denial of Service (DoS) attacks is provided
too.

Jari Arkko from Ericsson gave a presentation on Host Identity Indirec-
tion Infrastructure (Hi3) [NA04b]. The work is motivated by the identifier
and locator split in HIP: how can a host use only a HIT to initiate end-to-
end network connections without the IP address?

HITs are not resolvable from the DNS, but DHTs can support resolving
of HITs to IP addresses. i3 is an overlay based on DHTs. HIP can utilize
i3 as a lookup mechanism, which also solves the referral problems. HIP
can also be enhanced with protection against some DoS attacks, like I1
storms, due to the distributed nature of i3.

In the proposal, i3 is used for transporting the HIP control messages.
Regular IPsec is used for carrying the data traffic without i3. The approach
still works with middle boxes as they can learn about the traffic from the
Security Parameter Index (SPI) numbers in the ESP headers.

161

CHAPTER 6. HOST IDENTITY PROTOCOL

6.6 Conclusions

Mobility, multihoming, and security have been an active research area in
recent years because the current Internet architecture has not been orig-
inally designed with mobility and security in mind. Many alternative so-
lutions have been engineered to address the problems with the current
design, and one of them is HIP.

HIP would be an ideal alternative solution from the point of view of
consumers, because it is almost a complete “all-in-one” system: security,
mobility, and multihoming are included. HIP still needs some auxiliary sys-
tems, like forwarding agents, for full mobility. HIP also needs changes in
networking stacks of existing end hosts, and may also require changes in
the middle boxes.

Performance measurements and interoperability testing have shown
that HIP can really be made to work in practice. Several HIP implemen-
tation projects have been developing their independent prototypes. There
has been growing interest in the HIPL implementation, especially from the
beginning of the year 2004. Several people have been in contact and in-
terested in the HIP implementation at HIIT.

Work is in progress to overcome the problems with NATs. A very im-
portant research topic is to evaluate the effects of HIP deployment on a
large scale, and to see how the identity-locator split changes the nature of
the Internet.

In the future, the security and identifier namespace properties of HIP
can even be enchanced by combining it with i3. Support for HIP multicast
may also be easier to design with i3.

162

Chapter 7

SIP and Events

7.1 Introduction

Session Initiation Protocol (SIP) [RSC+02] is a standard text-based ap-
plication-layer signaling protocol. The SIP protocol aims to meet the re-
quirements of the telecommunications industry by converging with soft-
ware technologies. The applications of SIP vary widely from Internet tele-
phony to control applications, including e-commerce, multimedia confer-
ences, and instant messaging services. Also, the SIP protocol is con-
sidered to be a valid option for home networking. Intensive research
is being conducted by the Internet Engineering Task Force (IETF), con-
centrating on various SIP related topics: SIP [RSC+02] itself, SIMPLE
(http://www.ietf.org/html.charters/simple-charter.html) and SIP-
PING (http://www.softarmor.com/sipping/)1. With the significant fea-
tures of SIP, such as scalability, reusability, and interoperability, this proto-
col has stimulated research for the third generation mobile networks. The
third generation partnership project (3GPP) [GM02] has selected SIP as
its signaling protocol for call control.

The objective of this chapter is to study the existing trend and applica-
tion areas of SIP in the field of Information and Technology. The emphasis
is on a comparative study of the SIP event package against various exist-
ing event architectures.

The rest of this chapter is organized as follows: an overview of the ba-
sic features and functionalities involved in SIP are explained in section 7.2.
The research areas related to SIP and the different working groups are de-
scribed in section 7.3. The SIP event architecture is explained in detail and

1The functions of SIMPLE and SIPPING working groups are discussed in subsec-
tion 7.3.2

163

http://www.ietf.org/html.charters/simple-charter.html
http://www.ietf.org/html.charters/simple-charter.html
http://www.softarmor.com/sipping/
http://www.softarmor.com/sipping/
http://www.softarmor.com/sipping/

CHAPTER 7. SIP AND EVENTS

compared with various existing distributed event standards in section 7.4.
The work of Sun Java APIs for SIP is portrayed in section 7.5. A study
of different research articles in the application area of SIP events is pre-
sented in section 7.6. Finally, in section 7.7, the report concludes with an
overall summary of the topics discussed in the previous sections.

7.2 Overview of SIP

This chapter presents the basic concepts of SIP. The steps for establishing
a session and the different transaction methods involved are discussed.
Also, the salient features of SIP are explained.

7.2.1 Session Initiation Protocol (SIP)

SIP is an application-layer control protocol that can establish, modify, and
terminate multimedia sessions over the IP network [RSC+02]. It is well
suited for the requirements of presence applications as it routes the re-
quest from any user on the network to the server that holds the registra-
tion state of the user. Thus, SIP networks may be used to establish global
connectivity for presence subscriptions and notifications, enabling it to be
a suitable protocol for ubiquitous computing.

7.2.2 Terminologies in SIP

This section presents a brief summary of the central SIP terminologies.
The definitions are from RFC 2543 (obsolete) [HSSR99] and [Cam01].

Dialog A peer-to-peer SIP relationship between two user agents that per-
sists for some time.

Session A collection of participants, and streams of media between them,
for the purposes of communication. Two familiar examples of ses-
sions are Internet telephone calls and multimedia conferences.

Client A network element that sends SIP requests and receives SIP re-
sponses. Clients interact directly with a human user or a terminal
device. Proxies and user agent clients are clients.

Server A network element that receives requests in order to service them
and sends back responses to those requests. Servers include prox-
ies, user agent servers, redirect servers, and registrars.

164

7.2. OVERVIEW OF SIP

User agent The initiator of a SIP request (user agent client) or a respon-
der (user agent server) on behalf of an end user. A user agent
represents an end system containing a user agent client (UAC) to
generate requests and a user agent server (UAS) answering to the
requests from UAC. A UAC is capable of generating a request based
on some external stimulus (e.g. the user clicking a button or a signal
on a PSTN line) and processing a response. A UAS is capable of
receiving a request and generating a response based on user input,
external stimulus, the result of a program execution, or some other
mechanism.

Back to Back User Agent (B2BUA) A logical entity that receives a re-
quest and processes it as a user agent server. In order to determine
how the request should be answered, it acts as a user agent client
(UAC) and generates requests.

UAS Core A set of processing functions required at a UAS that resides
above the transaction and transport layers.

Registrars Entities co-located with a proxy or a redirect server accepting
registration requests from users.

Redirect server A user agent server that generates 3xx responses to the
requests it receives, directing the client to contact an alternate set of
URIs.

Proxy server An intermediate entity that receives requests from a client
(acting as a Server) and forwards or re-initiates the request (acting
as a Client) to other servers. A proxy server can be either stateful
or stateless. When stateful, it remembers incoming requests and
their associated outgoing requests, and co-ordinates the responses
accordingly.

Location server Used by the SIP redirect or proxy server to obtain infor-
mation about the called party’s possible locations. This may come
from the SIP server or other protocols (non-SIP) when externally lo-
cated.

SIP trapezoid The arrangement of SIP proxy servers that act on behalf of
user agent clients to establish connections between them.

SIP entities Any entities present in the functionality of SIP. Examples are
user agent clients and servers, stateless and stateful proxies, and
registrars.

165

CHAPTER 7. SIP AND EVENTS

SIP transaction Occurs between a client and a server and comprises all
messages from the first request sent from the client to the server up
to the final (non-1xx) response sent from the server to the client.

7.2.3 Steps Involved in Establishing a Session

To establish a session, an INVITE request is sent to SIP Agent 2 from
SIP Agent 1. SIP Agent 2 returns an OK response. After it receives an
acknowledgement from SIP Agent 1 the session is established. Similarly
a BYE and an OK message is used to terminate the session.

Figure 7.1 shows an example of session establishment between two
SIP user agents.

1. The user agent client (caller) sends an invite request to the callee
with the address of the callee. The address is similar to a mailto
URL. For example, if the address of the callee is callee@hiit.fi,
then the corresponding SIP URL will be sip:callee@hiit.fi.

2. The request will be sent to the SIP proxy. The location of the callee
at that moment will be found out by the SIP proxy. To do so, the
proxy sends the invitation to multiple locations and finds the exact
place of the user at the moment. The process of sending an invita-
tion to multiple points for finding the user’s current location is termed
“forking”.

3. Finally, the request arrives at the UAC (callee). The callee can either
accept or reject the request. If the callee accepts the request a con-
firmation is sent to the caller. A session is then established after the
callee receives an acknowledgement from the caller. Here, the SIP
proxy is responsible for delivering messages and responses between
the caller and callee.

Address binding is the method used to register a user’s current location
when he switches on his SIP client. This registration is used to find out the
user’s location at any given moment.

7.2.4 Methods and Response in a SIP Transaction

There are six methods defined in SIP for session establishment. The num-
ber of methods increases with extensions and need for new applications
based on SIP functionality.

166

7.2. OVERVIEW OF SIP

SIP Agent1 SIP Agent2

Request

OK

Acknowledge

Media Session

BYE

OK

Figure 7.1: Session Establishment

INVITE (REQUEST) initiates a session, e.g. by inviting a user to join a
call.

ACKNOWLEDGE (ACK) confirms that an INVITE has been received. ACK
is used only as a response to INVITE.

BYE terminates the session.

OPTIONS queries a server about its capabilities.

CANCEL cancels a pending request, but does not end the session.

REGISTER registers with the location service.

The response codes given for SIP methods are described below and in
[Sin01].

167

CHAPTER 7. SIP AND EVENTS

CODE Description
1xx Provisional or informational: Request is progressing

but not yet complete
2xx Success: Request has completed successfully
3xx Redirection: Request should be tried at another loca-

tion
4xx Client Error: Request was not completed due to an

error in the request; it can be retried when corrected
5xx Server Error: Request was not completed due to an

error in the recipient; it can be retried in another loca-
tion

6xx Global Failure: Request failed or should not be retried
again

7.2.5 Features of SIP

SIP has many significant features, such as interoperability, scalability, and
reusability. One of the important features considered throughout the de-
sign of SIP is interoperability. Thus, the characteristics of SIP enable ap-
plication developers to add special features and extensions to the core
concept of SIP.

SIP is designed to be scalable, and it can handle a large number of
requests efficiently. To assure scalability, SIP servers are operated in two
modes, stateless and stateful mode. Stateful proxies store, and state-
less proxies do not store, the records of received and forwarded requests.
Thus, stateless proxies are efficient in handling more requests, and can
be used in the core network. Stateful proxies, which are well suited for
the requirements of forking and multicasting are used at the edges of
the network. This way of utilizing the proxy based on network demand
makes SIP scalable in a distributed environment [Cam01]. The SIP server
performance tests conducted by IPTEL (http://www.iptel.org), RAD-
VISION (http://www.radvision.com), and Mocking bird networks (http:
//www.mockingbird.com) individually has shown efficient results.

Reusability is another feature of SIP. The protocol works well with many
of the existing protocols that are used with HTTP. Hence, SIP matches the
need without any requirements to build a totally new architecture. The
addressing notations used by SIP are similar to that of HTTP. Also, SIP
supports MIME and SMTP protocols for email transfer.

The main functionalities accomplished by SIP are

• Name translation and user location: call reaches the callee exactly

168

http://www.iptel.org
http://www.iptel.org
http://www.radvision.com
http://www.radvision.com
http://www.radvision.com
http://www.mockingbird.com
http://www.mockingbird.com
http://www.mockingbird.com

7.3. SIP RESEARCH AREAS

at his current location.

• Feature negotiation: supported features are agreed on with the mem-
bers involved in a group [BSSW03].

• Call participant management: management of actions that are taking
place during a session, such as canceling, transferring, and holding
calls.

• Call feature changes: changing call characteristics during a call, e.g.
modifying the features.

7.3 SIP Research Areas

At present there are various research groups working on SIP and its ap-
plications. The IETF and its supplementary groups are involved in active
research on SIP and its extensions. Other than the IETF, 3GPP is also
designing the standardization for using SIP in mobile networks. The SIP
Center (http://www.sipcenter.com/), formed by the co-operation of var-
ious industrial partners, and SIP Forum (http://www.sipforum.org/), a
non-profit organization formed by individuals interested in SIP develop-
ment with support from industrial partners, are the other active participants
in the SIP community.

7.3.1 Active Research Topics

SIP is a prominent research area, since the SIP core concept and its
extensions provide extensive applications in different fields ranging from
telecommunication to e-commerce. Emerging research topics are

SIP mobility (Mobile SIP)
Mobile SIP studies the possibility of using SIP effectively for mo-
bile communications. Here, mobility is defined with respect to ter-
minal, personal, service, and session mobility [Cam01]. Henning
Schulzrinne et al and Stefan Berger et al have discussed the appli-
cation of SIP in mobile and ubiquitous computing [SW00, BSSW03].
Session mobility is not possible with Mobile IP. In Mobile IP a perma-
nent IP address is necessary, and it is bound to a temporary care-of-
address for identifying the host. Moreover, Mobile IP has the advan-
tage of extending terminal mobility for a wide range of applications,
and not constraining it to a very narrow area of telephony.

169

http://www.sipcenter.com/
http://www.sipcenter.com/
http://www.sipcenter.com/
http://www.sipforum.org/
http://www.sipforum.org/

CHAPTER 7. SIP AND EVENTS

SIP, an application layer protocol, supports session mobility using
mechanisms like third-party call control. SIP accepts the SIP identi-
fier, which is similar to the format of an email address, and binds it to
the temporary IP address or host name. Thus, the user is entitled to
immediate access of mobile services. SIP has to use a separate ano-
nymity service to hide the location details of the terminal. Comparing
the advantages and disadvantages of Mobile IP and SIP, improved
and additional applications can be formed by combining the salient
features in both protocols.

Authentication, Authorization and Accounting (AAA) for SIP
The existing protocol RADIUS can be configured to fulfill the require-
ments of SIP [Cis03]. However, higher-level security features are
required for AAA protocols as the complexity of the architecture in-
creases with different applications of SIP.

Multicasting with SIP
The project MBone [SRL96], originally intended for researching an
efficient multicasting system led to the development of SIP, a com-
ponent of MBONE. Therefore, SIP was basically designed for en-
abling multicast sessions. While multicasting is an intensive area
of study, research in mobile multicasting and related areas is in its
infancy. The multicasting protocols designed for static environment
are not suitable for the mobile environment, and hence a mobile-
specific architecture is considered. The area of study in mobile mul-
ticasting includes quality of service, mobile host hand-off, and reli-
ability. Christophe Jelger et al and Hrishikesh Gossain et al have
analyzed the research issues involved in mobile multicasting [JN02,
GdMCA02]. SIP can be applied to mobile multicasting as it supports
mobility and has the features to handle multicast sessions.

SIP server performance
The basic issues that arise with quality of service should be man-
aged. Network congestion and handover issues have to be studied
in detail.

SIP for control applications
Control applications include call control services. Call control for
telecommunication-based applications is an evolving field with the
contribution of Sun’s Java APIs such as JAIN and JCC. Also, re-
search works are carried out studying the possibility of SIP call con-
trol in other communication areas, such as broadband satellite sys-

170

7.3. SIP RESEARCH AREAS

tems [Kar03]. SIP is considered to be a suitable protocol for home
networking. Though there are many existing protocols for home net-
working, SIP gains higher importance as it has the required features
of simplicity, scalability, and reusability.

Porting SIP to IPv6
Due to the unexpected growth of Internet usage, the IPv4 version
of IP addressing is expected to get exhausted soon. IPv6, the pro-
posed successive version, will be replacing IPv4. As a result all IP
networks have to support IPv6 when the transition of IP addressing
takes place. SIP, currently emerging as a signaling protocol for IP
networks, should be capable of supporting IPv6. There are few suc-
cessful implementations of SIP that support both versions of IP. Still,
there are studies going on to ensure that SIP also works over IPv6.

Interoperability between SIMPLE and Jabber
Jabber (http://www.jabber.org) is an open source protocol for in-
stant messaging based on the client-server architecture and imple-
mented using XML. It is a tested protocol, and at present Jabber is
used extensively by clients in instant messaging applications. SIM-
PLE, an extension of SIP supporting mobility and call control, could
be interworked with Jabber to provide an efficient instant messaging
system for both wired and wireless environments [Sau02].

7.3.2 Working Groups in IETF

There are three significant SIP-related working groups within the IETF:

Session Initiation Protocol Working Group (SIP WG)
The SIP WG concentrates on the specification of SIP and its exten-
sions. The main target of this working group is to define the nec-
essary end-to-end functionalities, generic features, and extensions
of SIP. Effective usage of existing Internet protocols and architec-
tures is one of the main factors considered to achieve the goal of this
working group. The SIP working group co-ordinates with other IETF
working groups, such as SIPPING, Multiparty Multimedia Session
Control (MMUSIC), and PINT (PSTN and Internet Internetworking).

SIP for Instant Messaging and Presence Leveraging Extensions
Working Group (SIMPLE WG)

The SIMPLE WG deals with the application of SIP in the services

171

http://www.jabber.org
http://www.jabber.org

CHAPTER 7. SIP AND EVENTS

of Instant messaging, presence, and session-oriented applications.
The extensions defined by SIMPLE should be compliant with the ba-
sic behavior of SIP. SIMPLE works in association with the Instant
Messaging and Presence Protocol (IMPP) and SIP working groups.

Session Initiation Proposal InvestiGation Working Group (SIPPING
WG)

The SIPPING WG studies the possible applications of SIP related to
telephony and multimedia. Also, the group analyzes the extensions
required to implement the applications. The specific task of the WG
are standardizing a framework of SIP for telephony, application of
AAA in SIP telephony, analyzing the multi-party applications of SIP,
and SIP interaction with media servers. This working group works in
co-operation with SIP, SIMPLE, MMUSIC, Authentication Authoriza-
tion and Accounting (AAA), IP Telephony (IPTEL), and PINT working
groups.

7.3.3 Work in the Third Generation Partnership Project
on SIP

The 3GPP was formed in 1998. The objective of the 3GPP is to co-
ordinate the activities of various telecommunication bodies such as ARIB1,
CCSA2, T13, ETSI4, TTC,5 and TTA6. SIP has been selected as the ses-
sion establishment protocol for the 3GPP IP Multimedia Core Network
Subsystem (IMS) [GM02].

The 3GPP has identified certain requirements for SIP to work efficiently
over cellular networks:

• The signaling protocol should efficiently use the radio interface.

• In a cellular network, as the size of terminals used are small, the
protocols should require minimal power and memory.

• The time taken to initiate a session should be minimal.

1Association of Radio Industries and Business, Japan
2China Communications Standards Association
3Telecommunications, USA
4The European Telecommunication Standards Institute
5The Telecommunication Technology Committee, Japan
6Telecommunications Technology Association, Korea

172

7.3. SIP RESEARCH AREAS

• The signaling procedure should be similar for roaming and non-roam-
ing situations.

• Mobility management of terminals is carried out by the access net-
work, and hence there is no need for SIP to have terminal mobility
management.

• IPv6 is used in the IMS, and therefore SIP is expected to support
IPv6.

A SIP outbound proxy is used to support both roaming and non-roam-
ing procedures in the network, and hence the mobile device (UA) needs
to know the address of the SIP outbound proxy server. DHCPv6 for SIP
servers helps the UA to locate the SIP outbound proxy server address.

Registration and Deregistration

The necessity and features of registration and deregistration procedures
are explained clearly in the SIP event packages. When the SIP terminal
is switched on, the configuration data containing the identity of the home
network of the device is read by the UA and stored in the memory of a
Subscriber Identity Module (SIM) card or some other memory device. This
identity of the home network is used by the device to know the SIP regis-
tration address. The registration is forwarded by the terminal through the
SIP outbound proxy to the SIP registration address.

The registration is essential because of the following reasons:

1. The UA has to register before sending or receiving a session request.

2. The SIP server proxy requires the details, such as when and where
the user and terminal are located, from the information furnished in
the registration.

3. During registration, pre-authentication is done to avoid post-dial de-
lays.

4. Once registered, the user is assigned to a particular serving proxy
which downloads the service profile for the user to trigger services.

A single registration should be sufficient to locate the user at both home
and visited networks. The registration for roaming and non-roaming proce-
dures should be the same. The process of deregistration, which is equally
important, is executed by registering with the expiration timer set to zero.

The circumstances where network-initiated deregistration becomes un-
avoidable are

173

CHAPTER 7. SIP AND EVENTS

• The SIP server proxy needs to be shut down due to unexpected hap-
penings in the network.

• When the user roams to a different network, deregistration is essen-
tial to avoid inconsistent information and redundant data storage.

• As the subscription timer expires, the subscribed events have to be
canceled by the administrative function of the SIP proxy server. Also,
to overcome the issues arising due to e.g. a stolen terminal, cancel-
lation of the subscription is important.

SIP compression techniques are identified by 3GPP to transfer long
SIP messages over the air interface and to reduce the session set up time.
The other characteristics to be considered with SIP are quality of service,
prevention of service theft, and prevention of malicious usage.

Identification of SIP Users over the Cellular Network

A given private user identity is unique for all global users, and it can not be
used for routing SIP messages. This identity is permanently allocated to
a user based on his business subscription with the home network. Private
user identity can be effectively used for authentication, authorization, and
administration as well as for accounting purposes.

One or more identities are allocated to a user to communicate with
other public users. This public identity has to be registered with the SIP
registrar before becoming involved in a session. The public user identity
is authenticated by the network, and checked for its association with the
correct private identity.

7.4 SIP and Event Architectures

Distributed event systems play a vital role in facilitating asynchronous infor-
mation dissemination. As a newly designed event architecture, SIP utility
has higher possibility of usage in different event-based applications. To
become an ideal event system, the event standard has to prove that it has
beneficial features compared to existing systems. Also, event systems
for the mobile environment have to handle events efficiently with smaller
memory size and less power consumption, and use less bandwidth. Thus,
research into the SIP event system is challenging so as to make it an ideal
event system which can be used in wired, wireless, and mobile environ-
ments.

174

7.4. SIP AND EVENT ARCHITECTURES

7.4.1 An Introduction to Events in Distributed Systems

Events are expected occurrences when a predefined condition is met, or
when some expected change occurs in the system. Event monitoring and
notification services are required to monitor the events and relay them to
the desired clients in a distributed environment. The application of event
services in a mobile environment is an emerging field with increasing re-
sponse from the end-users.The two main actors involved in an event ser-
vice are

Consumer (Subscriber, Listener, Observer)
Interested in getting the notifications about events; subscribes for
particular events.

Supplier (Producer, Notifier, Publisher, Subject)
Notifies a consumer when an event occurs to which that consumer
has subscribed.

The processes involved in an event service are event subscription,
monitoring, and notification. There are many existing event frameworks for
distributed systems such as CORBA, JINI, and SOAP grid events. Each
standard has its own merits and demerits. Recently, the event package of
SIP is becoming more popular compared to the presently used event ar-
chitectures in mobile applications. Any event framework should overcome
the basic issues of security, interoperability, and extensibility. This chapter
treats briefly the features of the existing event frameworks of CORBA No-
tification Service, JINI, and Grid SOAP events. Also, a comparative study
of these event frameworks with that of the SIP event package is presented
in detail.

7.4.2 General Requirements of an Event Framework

Various event frameworks exist for the distributed computing field. The
functional requirements for an event framework can be classified as fol-
lows [SGGB02]:

• Filtering options: The subscription method for subscribing to the
events should include a filter option to ensure that the notification
is sent only for the subscribed events.

• Expressiveness and scalability of the filtering language.

• Interoperability: A main factor if the subscription and notification func-
tions have to be performed across various platforms.

175

CHAPTER 7. SIP AND EVENTS

• Quality of service.

Mobility support and buffering are also essential functional require-
ments in a ubiquitous computing environment. The non-functional features
required in an event system include fault tolerance, scalability, and secu-
rity.

7.4.3 Design Patterns for Event Architectures

There are two well-known design patterns based on distributed event ar-
chitecture, namely the observer and notifier patterns. The observer pat-
tern is a simple model, with a subject and an observer. The subscriber
registers to a specific event, and the subject notifies the subscriber when
there is an update. In this pattern, the subject needs to know about the
subscriber. Hence, this pattern becomes complicated in a wide distributed
architecture where the producer has to keep track of all the consumers
subscribed for each event.

The notifier pattern has an advantage of having a broker architecture
that separates the subscriber and notifier. Event subscription in the no-
tifier pattern is based on the events in which the subscriber is interested
in instead of subscribing by knowing the details of who is publishing the
events.

The observer pattern is used in the SIP and JINI event architectures
whereas a variant of the notifier pattern is used in the CORBA Notification
service. The observer pattern is known for its simple design, while notifier
is an extended model of the observer pattern with the broker pattern.

7.4.4 SIP Event Notification

RFC 3265 has been framed for SIP-specific event notification. The event
package enables the client/user-agent to subscribe to the desired events
and get notified when an expected event occurs. The application of event
packages can be seen in automatic call-back services, buddy lists (pres-
ence), and message waiting indications.

The terminologies involved in the event package are listed as follows.
The definitions are taken from [Roa02].

Event Package An additional specification when an asynchronous event
occurs, and gets notified to the subscribed client.

Notification An act of a notifier sending a NOTIFY message to a sub-
scriber of the state.

176

7.4. SIP AND EVENT ARCHITECTURES

Notifier A user agent that generates NOTIFY requests for the purpose of
notifying subscribers of the states.

State Agent A notifier that publishes state information on behalf of a re-
source.

Subscriber A user agent that receives NOTIFY requests from notifiers
containing information about the state of a resource in which the sub-
scriber is interested.

Subscription A set of application state associated with a dialog.

Subscription migration The act of moving subscription from one notifier
to the other.

The important methods dealing with event notification are Subscribe
and Notify. Both methods are discussed in detail in the following part of
this section.

SUBSCRIBE

This method is used to request current state and state updates from a re-
mote node [Roa02]. The subscribe method contains the following entities:

Expiry time A subscription is valid up to the expiry time specified in the
header. The subscription has to be refreshed before it expires, and if
the expiry time is not explicitly mentioned, a default value defined by
the event package is used.

Request URI This is used to route the subscribe request to the appropri-
ate entity.

Event header This shows the subscribed event class. There should be
exactly one event header specified and the event identity is optional.
The identity is useful in differentiating between multiple subscriptions
within the same dialog [Roa02].

A successful subscribe request receives a 200-class response. A 202
response shows that the subscription has been received but the subscriber
has not been subscribed to the event yet. Non-200-class responses show
failure to subscribe to the event, and hence no notification will be sent.
Successful unsubscription from an event also receives a notification. If
the subscription is not renewed before its expiry time the subscription will

177

CHAPTER 7. SIP AND EVENTS

be terminated, and the information will be notified to the subscriber with a
reason=time-out parameter in the subscription state header.

Figure 7.2 shows the steps involved in an event subscription and noti-
fication. The subscriber SUBSCRIBEs for an event and gets a 200 con-
firmation response. Once the subscribed event occurs the notifier sends
a NOTIFY to the subscriber and receives a response as confirmation of
success.

200

Subscriber Notifier

SUBSCRIBE

200

NOTIFY

200

NOTIFY

Figure 7.2: Event Subscription and Notification

NOTIFY

This message is constructed immediately after the 200-class response is
sent to the subscribe request. It is used to notify the subscriber when a
subscribed event occurs. The notify request fails if the response times out,
or an unsuccessful-class response is sent.

The subscription state header in NOTIFY should indicate the status of
the subscription. The value of the subscription state hence shows whether
the subscription is still active or pending. Responses such as retry-after
indicate that the subscription request has not yet been confirmed.

The various reason codes defined for the notify methods in RFC 3265
are listed as follows:

deactivated indicates the termination of the subscription and hence the
subscriber can try sending a new subscription request immediately.

178

7.4. SIP AND EVENT ARCHITECTURES

probation shows the termination of the subscription and the subscriber is
expected to retry after the specified time, if the retry-after parameter
is included in the header.

rejected states the rejection of the subscription due to authorization poli-
cies. The client should not retry.

timeout expresses the termination of the subscription as the time limit
expires. The subscriber can immediately send a new subscription
request.

giveup indicates the termination of the subscription due to problems in
the time factor for authorization. The subscriber may retry after some
time as indicated in the retry-after parameter.

noresource subscription terminated as no resource was detected to mon-
itor the event.

Other than the subscription state value, the event header similar to that
of the subscribe method should be available. Also, the event identifier is
optional as in the case of subscribe method. The body of the notification
method contains the state of the resource. If the state information is too
big to transfer, a URI value is returned from where the state information
can be accessed by the subscriber.

The Call Sequence (CSeq) is used to maintain the order of the trans-
action while the Call-ID uniquely identifies the particular invitation or regis-
tration from a client. The Call-ID can also be termed as an unique global
identifier [RSC+02].

7.4.5 CORBA Notification Service

The CORBA Notification Service [OMG01b] from the Object Management
Group (OMG) is an accepted solution set of the 3GPP for developing
telecommunication applications. The basic architecture follows the mixed
push-pull model and the notifier/event-channel design pattern. According
to the notifier design pattern, CORBA Notification Service uses an event
channel that decouples the consumer and the producer. Based on the
mixed push-pull model, the invocation on an object in the event channel is
done by both the supplier and consumer to push and pull events respec-
tively to and from the event channel. Moreover, CORBA Notification Ser-
vice supports event filtering. Filtering based on event priority and lifetime
can be implemented in addition to forward filtering that filters and forwards

179

CHAPTER 7. SIP AND EVENTS

the required events as requested by the consumer [ION02]. CORBA Noti-
fication Service has been discussed in subsection 2.3.5.

7.4.6 JINI Event Architecture

The JINI event architecture basically uses the RMI (http://java.sun.
com/products/jdk/rmi/) protocol and follows the listener pattern, a spe-
cific version of the observer pattern. The JINI specification requires an
event identifier and a sequence number to uniquely differentiate the gener-
ated events with the same event identifier. To avoid loss of data, maintain-
ing sequence numbers for events is essential in disconnected networks.
The JINI event system allows the addition of an application-specific mid-
dleman architecture to perform filtering [Li00]. A detailed analysis of the
Java distributed event model is given in subsection 2.3.2.

7.4.7 GRID SOAP Event Systems

This event system supports the additional features of event channels, leas-
ing, and filtering. It follows many of the features that are present in the
JINI event architecture. With GRID SOAP events the preferred features
for smaller devices, such as limited memory usage and resources, can be
achieved. The event publisher simply writes a pre-formatted set of strings
into the transport layer. SOAP is a light-weight protocol, and it is being
supported by many programming languages. Thus, GRID SOAP events
are more suitable for distributed environment [SGGB02].

7.4.8 Comparison between SIP, CORBA, GRID SOAP, and
JINI Events

Based on the various distributed event architectures analyzed so far, the
event filtering techniques and mobility support of the event systems are
compared in this section.

Event filtering is an open issue in the SIP event architecture. As the
SIP event package supports extensible implementation, a filtering system
could be included into it. XML and SOAP messages can be enveloped with
the subscription and notification message bodies. The SIP event package
supports subscription and notification life-time by adding an expiry time
value in its method headers. SIP supports personal mobility using the
forking technique. Also, SIP supports terminal, service, and session mo-
bility.

180

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/

7.5. SIP AND JAVA

The CORBA Notification Service provides a well-defined mechanism
for event filtering and supports buffering. Life-time values are included in
the property settings of filtering methods. Management of event domains
is addressed well in CORBA Notification Service and has been accepted
as a standard protocol for telecommunication applications by the 3GPP.
An overview of CORBA domain event management is presented in sub-
section 2.3.6

The JINI event system uses a middleman mechanism for filtering. The
lifetime of the subscription and notification methods in event systems are
carried out using leasing techniques. The basic JINI specification does not
provide any special mechanisms for mobility support. JINI is not suitable
for the mobile environment as it follows the RMI protocol which is less ef-
ficient for mobile services [Cam03]. Also, JINI does not support service
mobility. JINI events are being implemented and tested for home network-
ing.

GRID SOAP events include filtering. The life-time properties of notifi-
cation and subscription methods are set using a leasing technique. GRID
SOAP events do support the buffering features which are useful in the
mobile environment.

7.5 SIP and Java

This chapter gives a brief introduction to a Java-based implementation
for SIP. The various SIP implementation standards such as JAIN, SIP
Servlets, and J2ME are discussed.

7.5.1 JSIP — A Prototype Implementation of SIP Exten-
sions

Session establishment between clients using the jSIP is performed as de-
fined in RFC 2543 [HSSR99]. Also, it includes a prototype implementa-
tion of a few SIP extensions, e.g. instant messaging applications. The
download and API manual of the jSIP are available at SourceForge (http:
//jsip.sourceforge.net/).

7.5.2 SIP and JAIN

Java for Integrated Networks (JAIN) is a community extension of Java
technology developed by Sun’s Java Specification Participation Agreement

181

http://jsip.sourceforge.net/
http://jsip.sourceforge.net/
http://jsip.sourceforge.net/

CHAPTER 7. SIP AND EVENTS

(JSPA) and Java Community Process (JCP). JAIN enables the integration
of the Internet and intelligent network protocols. JAIN is designed with the
aim of co-ordinating the three network layers, namely the network, signal-
ing, and service layers. The areas of focus in JAIN are

• Protocol API specifications: Specifies interfaces to wire-line, wire-
less, and IP signaling protocols.

• Application API specifications: Addresses the APIs required for ser-
vice creation within a Java framework across all protocols covered
by the protocol API specifications.

JAIN has also defined the Java Call Control (JCC) API for call control
applications in telecommunications. JCC can be mapped to SIP where the
SIP application is built over the JCC implementation [JBA01].

The JAIN SIP API includes user agent, proxy, and redirect server inter-
faces. JAIN SIP Lite is a high level Java API for application development
for the J2SE and J2ME platforms. Developers need not worry about the
underlying SIP protocol.

7.5.3 SIP for J2ME

SIP for J2ME is the Sun Java specification for light-weight and resource-
constrained devices, such as mobile phones. The Java Specification Re-
quirement (JSR) draft has been published for SIP J2ME. Though SIPLite
can also be used in hand-held devices, such as Personal Data Assistants
(PDA), J2ME is mostly considered to be an architecture for mobile devices.

7.5.4 SIP Servlets

SIP Servlets is a high-level Java API specifically for SIP servers in telecom-
munication-based applications. SIP servlets can create and access ses-
sion, call, and transact data. Unlike HTTP servlets, SIP servlets interact
with the SIP, application, and proxy servers.

7.5.5 Interworking of Various Java APIs with SIP

Since the line of difference is thin between the functions performed by the
various Java SIP APIs, it is important to provide a clear differentiation.
SIPLite and Servlets are aimed at developers without a background in the
SIP protocol whereas JAIN needs expertise in both the protocol and Java.

182

7.5. SIP AND JAVA

JAIN is developed for J2SE, J2ME for mobile devices, Servlets for J2EE
and SIPLite is for both J2EE and mobile devices. Figure 7.3 shows the IMS
architecture designed by 3GPP integrating various Java APIs with SIP.

SIP for J2ME

SIP for J2ME
JSLEE/JSIP

P-CSCF

Visited Network

JAIN SIP

JAIN SIP JSLEE/JSIP

JSLEE/JSIP

JAIN SIP

SIP Servlet SIP Servlet

Application
Server

Application
Server Application

Server

Core
Network

Home
Network

MGW

MGCFS-CSCF

I-CSCF

HSS

Figure 7.3: IMS architecture [O’D03]

7.5.6 Open Source SIP Implementations

There are a few open source implementations available online:

• The SIP developer’s web page (http://communications.dev.java.
net/) provides installation packages for SIP presence, a JAIN SIP
proxy server, and a JAIN SIP proxy client.

• The siptrex (http://www.siptrex.net/news/) provides a SIP user
agent and proxy for IP telephony services used by application service
providers.

• The University of Columbia’s Internet Real Time laboratory’s research
group (http://www1.cs.columbia.edu/~pallavi/research/using.
html) working under signaling and control protocols has a SIP library

183

http://communications.dev.java.net/
http://communications.dev.java.net/
http://communications.dev.java.net/
http://www.siptrex.net/news/
http://www.siptrex.net/news/
http://www1.cs.columbia.edu/~pallavi/research/using.html
http://www1.cs.columbia.edu/~pallavi/research/using.html
http://www1.cs.columbia.edu/~pallavi/research/using.html
http://www1.cs.columbia.edu/~pallavi/research/using.html

CHAPTER 7. SIP AND EVENTS

and example codes. Also, a SIP user agent is available for download
at http://www1.cs.columbia.edu/~xiaotaow/sipc/index.html.

• The National Institute of Standards and Technology (NIST), provides
the implementation of JAIN-SIP interfaces used for further applica-
tion developments at https://jain-sip.dev.java.net/.

• In Vovida (https://www.vovida.org/) downloads are available for
SIP Residential gateway and SIP User Agent.

• Asterisk (https://www.asterisk.org/) is a software PBX that runs
on the Linux platform. The services given by Asterisk include voice
mail services, directory services, and call conferencing.

7.6 Related Work

7.6.1 Medical Event-based Monitoring System

Medical event-based monitoring system [AS03] suggests the use of SIP,
Bluetooth, and SOAP for the medical event-based monitoring system. Ac-
cording to the scenario explained, the heart monitor sends signals to the
Bluetooth access point that is used to find out the doctor’s current loca-
tion. The access point is connected to a SIP server to which the hand-
held device of the doctor has subscribed for the event. Thus, the doctor
receives the update about the patient’s health through the notification of a
subscribed event to his hand-held device.

In this system, the SIP event methods Subscribe and Notify play a lead
role. The author has suggested the use of SOAP for Remote Procedure
Call with SIP. The feature of SOAP as an interoperable protocol in multiple
domains is a key requirement in the medical field.

7.6.2 Application of SIP to Ubiquitous Computing

The architectural description of a service discovery system, location sens-
ing, and call control using SIP, Bluetooth, and Service Location Protocol
(SLP) is discussed in [BSSW03]. The information about the location of the
user can be identified using the Session Description Protocol.

Location sensing includes the functionalities of determining user loca-
tion and publishing location information. Based on the location information
received, certain automated events are triggered and the communication

184

http://www1.cs.columbia.edu/~xiaotaow/sipc/index.html
https://jain-sip.dev.java.net/
https://www.vovida.org/
https://www.vovida.org/
https://www.asterisk.org/
https://www.asterisk.org/

7.6. RELATED WORK

behavior is controlled. Bluetooth is used to determine user location and
SIP is used to publish the location information. The SIP methods REG-
ISTER and PUBLISH are used for this purpose. Also, the event-triggered
actions and communication control are handled by the SIP presencing and
event packages.

Stefan Berger et al [BSSW03] have explored the possibilities of using
SIP messaging, SOAP, and HTTP for implementing control messaging be-
tween terminal devices.

The service example is demonstrated with a SIP-based ubiquitous com-
puting environment. The user entering into a video conferencing room
with his wireless device is first authenticated and authorized using the ac-
cess control technique. Once the user has successfully entered the video
conference room, his credentials are added to the ubiquitous computing
system. The user’s mobile device gets the new IP address from the vis-
ited domain and informs the SIP server in the home domain of this new
IP address using the REGISTER method. Here the REGISTER method
also carries location information received from the Bluetooth devices. The
SIP server in the home domain can now perform the call control opera-
tions for the user after getting the REGISTER request. Using SLP, the list
of devices available at the current location and their capabilities are made
available to the user’s end system.

7.6.3 SIP for Emergency Systems

The Government office information systems subscribe to events in SIP-
based emergency systems and, they are notified in case of emergency.
The present method used for emergency systems is digital broadcasting.
UAC is the entity that subscribes to the event and UAS is the entity that
notifies the UAC of the occurrence of an event. Based on the informa-
tion received in the message body of NOTIFY, the UAC produces an alert
signal.

An authentication system is embedded in the architecture to check the
validity of UAC. Knarig Arabshian et al suggest the usage of SOAP within
the NOTIFY messaging system [AS01a].

7.6.4 SIP Extensions for Communicating with Networked
Appliances

The IETF draft submitted by Hughes Software [TCH00] suggests the appli-
cation of SIP in the networked appliances using the proposed ’DO’ method,

185

CHAPTER 7. SIP AND EVENTS

for example, in a home networking system where the consumer devices
are networked with each other. The body of the ’DO’ method carries the
action to be performed by the networked appliance. An authentication sys-
tem has to be included in the architecture.

7.7 Summary

The application of distributed event delivery plays a vital role in the emerg-
ing field of mobile applications. Providing an efficient event service is be-
coming a challenging task in the mobile environment. Current open issues,
such as roaming clients with fast handovers and disconnected clients are
yet to be answered for many existing event architectures. SIP events as a
developing standard should be able to meet these requirements.

From the analysis performed on various existing event standards it is
evident that there is no ideal event architecture which best suits the need
for wired, wireless, mobile, and ubiquitous environments.

SIP events have certain advantages over the other event architectures.
In a middleware event architecture such as CORBA, developing an event
system includes issues related to session management. In the case of SIP
events, which are an extension of SIP, session management is handled
efficiently. Hence, when building applications based on the event architec-
ture, the application developer need not give special attention to session
related issues. Also, Sun Microsystems has designed the specification re-
quirements for SIP services specific to various application environments in
Java Community Process (JCP). Thus, SIP event package requirements
can be sorted out easily with distinct Java APIs for different environments.

SIP events support mobility and session management. Still, they have
to provide the essential properties required for mobile environment, namely
filtering and buffering.

186

Chapter 8

Context Modeling

8.1 Introduction

The word “context” is built from the words “con” (with) and “text”, thus
context refers to the meaning that can be inferred from adjacent text. In
computer science, the most used definition of context comes from [Dey01]:
“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user
and application themselves.”

Examples of contextual information include

• user identity

• spatial information (location, orientation, speed, acceleration)

• temporal information (time of day, date, season of the year)

• environmental information (temperature, air quality, light or noise level)

• social situation (who you are with, people that are nearby)

• resources that are nearby (accessible devices, networks, hosts)

• availability of resources (battery, display, network, bandwidth)

• physiological measurements (blood pressure, heart rate, respiration
rate, muscle activity, tone of voice)

• activity (talking, reading, walking, running, sleeping)

• schedules and agendas

187

CHAPTER 8. CONTEXT MODELING

A system can be said to be context-aware if it makes use of contextual
information. Humans are in general very good at using implicit situational
information. For computers, interpreting and deducing context information
are hard tasks with many problems. For instance, to perform the task
“Reserve a table from a restaurant near to me”, it is required to have a
precise definition of terms used in the task, particularly what “near” means
to “me”.

Whereas the slogan of pervasive computing is to give access to infor-
mation “anytime and anywhere,” for context-aware systems it is “say the
‘right’ thing at the ‘right’ time in the ‘right’ way” [FY01]. Key research chal-
lenges for context awareness include [CFJ04, EBDN03]

• Defining an explicit representation of context that is suitable for knowl-
edge sharing, data fusion, and interpretation.

• Constructing reasoning mechanisms for deduction of contextual sit-
uation and detection, and resolving inconsistent contextual knowl-
edge.

• Implementing an adequate framework for user privacy protection.

• Distributed maintenance of context information: extraction, storage,
updating, deleting, modifying.

• Ways to express dependency and relevancy between pieces of con-
text information.

Of these, our focus is on the first one: context representation that has a
suitable level of formality and expressiveness for enabling context model-
ing and reasoning. For this report, we define context modeling to be the
art of representing context information in a form that enables advanced
context reasoning and maintenance. This means that we do not consider
sensor fusion performed by probabilistic models, which could be called
“context modeling” too; our interest is on information representation. For
other machine learning methods used for context modeling, see [DSDE03]
and [DSBE03].

The vocabulary of context-related research is quite unsettled. For this
report we use the following definitions:

• The datasets where context information is stored are called context
profiles.

• The distributed maintenance of these profiles is called context main-
tenance.

188

8.2. REQUIREMENTS FOR CONTEXT REPRESENTATION

8.2 Requirements for Context Representation

Requirements for context profile representation used in a mobile environ-
ment include [HBS02]

• Interchangeability: Context profiles must be interchangeable between
different system components and parties.

• Composability/decomposability: Because it must be possible to main-
tain context information in a distributed way, it must be possible to
compose and decompose profiles. This enables, for example, send-
ing of only the changed part of a given profile. Decomposability is
also required in order to be able to handle privacy, i.e. separating
possibly private information from a profile before sharing it.

• Extensibility: The number of possible context variables is, even in
quite restricted domains, virtually unlimited. Thus extensibility of the
representation by introducing new terms, context variables, is an im-
portant issue.

• Expression of dependability: Context information can be interpreted
from other bits of context information, and thus depend on them;
if the value of some piece of information changes, so should the
value of the dependent context information. There must be a way to
express this dependency, and dependency between different profiles
must be supported.

• Shared understanding: In an open environment, where basically
anyone can contribute to the common pool of knowledge, shared
understanding between different parties is required.

Possible additional beneficial requirements, which make the processing
of context profiles more convenient, include

• Formality: Context interpretation needs a formal representation with
sufficient expressiveness. The amount of expressiveness needed to
support context reasoning is still an open question and must be in-
vestigated further, as resources are scarce in a mobile setting. For-
mality is also one of the keys for shared understanding.

• Uniformity: In order to ease interpretation and deduction, uniformity
of the representation in profiles is desirable.

189

CHAPTER 8. CONTEXT MODELING

• Standardization: The best way to ensure shared understanding, uni-
formity, and interoperability is standardization of the representation
format of profiles.

8.3 Classification of Context Information

In this section, we present different classifications of context, the focus
being on the mobile environment. They serve as a historical introduc-
tion to more recent models. Schirmer et al [SB00] came to the following
conclusions when analyzing context: The traditional notion of context for
computer programs was formed of the user running the program, and the
computing resources and information used by the program. By adding the
location of the user to the context, the attributes of the environment are
taken into account. These attributes are grouped into three categories,
namely the physical, technical, and social spheres. They also classified
context along 3 axes:

• Change of value

– Static: hardly changing, e.g. resolution of a display

– Dynamic: changing depending on time and location, e.g. user
activity

• Scope

– Local: “micro world”, associated with a single object, e.g. reso-
lution of a display

– Global: “macro world”, correlating multiple objects, e.g. location
of a user

• Interpretation

– System-oriented: unequivocal characteristics of system compo-
nents

– Application-oriented: dependent on interpretation with different
uses

Another way to classify context information is to divide it into layers. For
example, in [AAH+02] the following classification has been used:

190

8.4. ONTOLOGIES

• On the lowest level, the physical layer, there are sensors and other
objects, producing output in a raw format. Examples of these are an
analogue microphone signal and the strength of a RF signal sent by
a WLAN access point.

• On the second level, the data layer, there are objects producing proc-
essed data, for example spectral information of the phonemes in the
audio signal or location coordinates computed based on three RF
signal strengths.

• The third level, the semantic layer, contains objects which transform
the data into a form meaningful for inferring context.

• The fourth level, the inference layer, uses information from the se-
mantic level, earlier information and inference rules, possibly dynam-
ically learned, to make educated guesses what the user (either man
or machine) is doing and what kind of services he, she, or it might
want.

• On the uppermost level, the application layer, applications or agents
make decisions on behalf of the user by using the inferred informa-
tion.

The objects on higher layers may combine input from one or more objects
on the lower layers with stored information.

8.4 Ontologies

Ontologies play a central role in context modeling, especially the generic
context modeling that we are after, i.e. the representation of contextual
information in a way that enables interoperability via shared understand-
ing of information and also allows easy introduction of new terms when
needed. Also, formality that enables deduction is an important area where
ontologies have a long history of research.

An ontology is a specification of a conceptualization [Gru93]. In other
words, an ontology is an explicit formal specification of terms and relations
between terms in a domain. This enables sharing and reuse of knowledge.
While the best-known ontologies are huge, e.g. WebOnto that is being
created for the Semantic Web, not all ontologies are a result of large-scale
collaborative efforts trying to cope with “everything under the Sun”. For
example, standardization efforts at expressing device capabilities, such as
CC/PP, formally can be said to be ontological in nature.

191

CHAPTER 8. CONTEXT MODELING

Ontologies play an important role in distributed systems, because they
may be stored at different places and created by different authors, which
offers flexibility and extensibility. While many issues in collaborative main-
tenance of ontologies are still unsolved, these problems are at least well
understood in this particular research area — in e.g. context modeling,
the same problems seem to have been quite overlooked until just recently.
One example of the maintenance problem is defining a new term to an
ontology.

In order to create computer systems that can “understand” and make
full use of a context model, the contextual information must be explicitly
represented so that it can be processed and reasoned about by computer
systems. Furthermore, shared ontologies enable independently devel-
oped context-aware systems to share their knowledge and beliefs about
context, reducing the cost and redundancy in context sensing [CFJ03].

The reason for using ontologies as fundamental construction pieces for
context representation is not only theoretically justified, but practical: the
field has produced a vast number of different kinds of tools for handling
the creation, evolution, and merging of ontologies. Many of the Semantic
Web tools are in fact ontological tools. The field is also moving forward
very fast, partially thanks to the hype around the Semantic Web, but also
due to the maturing of the research field [McG02].

The merging of different ontology fragments is one of the main tasks
of a reasoner, which is called an inference engine if it infers knowledge
from symbolically coded axioms. A reasoner may be queried via some
query language to deliver instances and their values, as well as concept
and attribute names based on the ontologies known to the reasoner. A
reasoner may also be used to validate consistency (within one ontology,
but also with respect to related ones), and to assert inter-ontology relation-
ships, and “complete” the ontologies by computing implicit hierarchies and
relationships based on given rules.

In context modeling, ontologies can be used e.g. to describe users’
task environments, as well as their goals, to enable reasoning about a
user’s needs and thus dynamically adapt to changes. Furthermore, de-
scriptions of device capabilities and the devices’ appropriate use will allow
applications to reason about how to best support users in any given con-
text [BB02].

Ontologies can be roughly divided into the following classes [FIP01]:

• Top-level ontologies describe very general concepts like space, time,
matter, object, event, action, etc., which are independent of a partic-
ular problem or domain.

192

8.4. ONTOLOGIES

• Domain ontologies and task ontologies describe, respectively, the vo-
cabulary related to a generic domain (like medicine, or automobiles)
or a generic task or activity (like diagnosing or selling), by specializ-
ing the terms introduced in the top-level ontology.

• Application ontologies describe concepts depending both on a par-
ticular domain and task, which are often specializations of both of the
related ontologies. These concepts often correspond to roles played
by domain entities while performing a certain activity, like a replace-
able unit or a spare component.

In practice, however, there does not exist a single commonly accepted
definition for different types of ontologies.

In the following, we will briefly review, from the context-modeling point
of view, different standardization efforts concerning some domain ontolo-
gies in the Fuego Core research area, and also the meta-ontology lan-
guage, “language for defining ontology languages”, OWL [W3C03b].

8.4.1 CC/PP

Composite Capability/Preference Profile (CC/PP) describes an interoper-
able encoding for capabilities and preferences of user agents, specifically
web browsers. Thus CC/PP can be seen as a domain ontology for user
preferences and device capabilities. Because of its wide acceptance as
a standard on field, it is important to support CC/PP for importing context
information to the system.

While CC/PP is based on RDF, its Achilles’ heel is its poor extensibility
resulting from a strict two-level hierarchy. In addition, attribute names are
required to be unambiguous even if they are used in different components.

8.4.2 Device Independence Working Group

W3C’s Device Independence activity has drafted a classification trying to
capture the general concepts of device independence from the web au-
thoring point of view. Entities like “Web page”, “Functional user experi-
ence”, and “Delivery context” are defined with explanations, and examples
are given. Defined concepts are used in stating “Device Independence
Principles”.

In a way the current state of the work can be considered equal to the
conceptual classification models mentioned earlier. In order to use the

193

CHAPTER 8. CONTEXT MODELING

concepts for context information interpretation and deduction, the relations
between concepts should be formally defined.

8.4.3 RDF

The Resource Description Framework (RDF) defines an XML language for
expressing entity-relationship diagrams [W3C99c]. RDF defines standard
tags for expressing a network of related objects. However, RDF does not
specify a single logical model of entities or relationships: the same rela-
tionship could be encoded in many ways. XML and RDF are necessary
but not sufficient for the exchange of complex information in open systems.
One or more standard logical models are required in addition to constrain
the use and interpretation of tags.

8.4.4 OWL Web Ontology Language

OWL Web Ontology Language is a language for defining and instantiating
Web ontologies [W3C03a]. A definite advantage of having a standardized
meta-ontology language such as OWL is that ontologies formed by it can
use the same generic tools for reasoning. If a system was built with a spe-
cific industry-standard XML schema, tools specific to the particular subject
domain would need to be created.

OWL (and to some extent also RDF) may be used as a metalanguage
to define other special purpose languages, such as communication lan-
guages for knowledge sharing and policy languages for privacy and secu-
rity. By defining the ontologies using OWL interoperability between differ-
ent system components and systems can be increased.

An OWL ontology may include descriptions of classes, properties, and
their instances. OWL has the most needed properties for ontologies, such
as owl:subClassOf, which allows structuring entities to sub-class hierar-
chies, thus enabling introduction of new concepts to ontologies.

OWL comes in three flavors [W3C03a], OWL Lite, OWL DL, and OWL
Full:

• OWL Lite supports users primarily needing a classification hierarchy
and simple constraint features.

• OWL DL supports users who want maximal expressiveness without
losing computational completeness (all entailments are guaranteed
to be computed) and decidability (all computations will finish in finite
time) of reasoning systems. OWL DL includes all the OWL language

194

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

constructs with restrictions such as type separation (a class can not
also be an individual or property, a property can not also be an in-
dividual or class). OWL DL is so named due to its correspondence
with description logics, a field of research that has studied a partic-
ular decidable fragment of first order logic. OWL DL was designed
to support the existing Description Logic business segment and has
desirable computational properties for reasoning systems.

• OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees.

Because reasoners for OWL Lite are said to “have desirable computa-
tional properties”, and OWL DL is subject to higher worst-case complexity,
OWL Lite is a natural first candidate of the three for use in a mobile envi-
ronment, especially if the reasoning or part of it is supposed to be done on
resource-scarce devices. On the other hand, “saying the same thing” can
sometimes be done in a shorter way with a more expressive language, so
the choice might not be that simple if the computation can be done on the
network side.

After an ontology has been created with OWL, the OWL formal se-
mantics [W3C03c] specify how to derive its logical consequences, i.e.
facts not literally present in the ontology, but entailed by the semantics.
These entailments may be based on a single document or multiple dis-
tributed documents that have been combined using defined OWL mecha-
nisms [W3C03a].

OWL has good expressive power for defining complex ontologies, and
it has standard language syntaxes (e.g., XML, N3, N-Triple) for computer
programs to process and manipulate the represented information [CFJ03].
The fact that OWL has good tool support that will be extensively broadened
in the coming years lays a strong bias for using it as the language of choice
for context reasoning.

OWL has already been used for creation of many special purpose lan-
guages, for example, an agent communication language [ZFD+03] and a
security policy language [KFJ03].

8.5 Formal Approaches to Context Represen-
tation

In this section, we review the more formal approaches to context repre-
sentation that enable reasoning. Also, context maintenance is reviewed

195

CHAPTER 8. CONTEXT MODELING

via architectural description in cases where available. Coupling of archi-
tecture, representation, and reasoning is quite typical for the field: a clear
sign of divergence and immaturity of the research area is the fact that the
vast majority of research groups have built their own context-aware system
from scratch, and research on context representation, maintenance, and
reasoning is done solely on that system. Because of this, the used vo-
cabulary and/or the meaning of terms also varies greatly between different
research groups.

The focus is on research where the formalism used for context rep-
resentation is provably expressive enough that it allows reasoning. Brief
architectural descriptions are given when applicable in order to be able
to evaluate the independence of the formalism from the architecture and
get some understanding of context maintenance in the reviewed systems.
This also helps the reader to understand the terms used in each system.

8.5.1 Comprehensive Structured Context Profiles (CSCP)

Held et al. [HBS02] describe a novel representation format that they call
“Comprehensive Structured Context Profiles (CSCP)”. While their focus is
on content adaptation and they use only static and local context informa-
tion, which does not go beyond the semantic layer, the format is interesting,
as it is claimed to overcome the drawbacks of CC/PP mentioned earlier.

CSCP is an RDF-based meta language. As a descendant of RDF,
CSCP inherits the interchangeability, decomposability, and extensibility of
RDF. CSCP interchangeability is based on the XML serialization syntax of
RDF.

Unlike CC/PP, the CSCP language does not define any fixed hierarchy.
Rather, it supports the full flexibility of RDF to express natural structures
of profile information. Attribute names are interpreted context-sensitively
according to their position in the profile structure. Hence, unambiguous
attribute naming across the whole profile (as necessary with CC/PP) is
not required.

CSCP supports decomposability by means of external references and
defaults. External references are used to extract sub-profiles to separate
CSCP documents.

8.5.2 Model for Mobile User Context

One step forward from merely classifying context information is to build a
conceptual model of it for a certain problem domain. In an attempt to model

196

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

mobile user context, Tazari et al. [TGF03] identify the following groups of
context data:

• Profiles of resources related to the user context, for example, avail-
able devices, services, documents, etc. Each such profile describes
the identity, characteristics, and capabilities of the underlying re-
source and “knows” the location and state of the resource.

• Profiles of locations, which describe the identity and state of the loca-
tion, and list the available resources and the people present at that
location. The state of a location results from the perception of the
physical characteristics of the location using sensor data, e.g. tem-
perature, brightness, etc.

• The current time in diverse forms, e.g. absolute time, hour, AM/PM,
etc.

• User profiles consisting of the user’s identity, characteristics, capabil-
ities, universal preferences, and the state of the user. A user’s state
includes information about his or her main activity, current terminal,
etc., and a reference to a location profile.

• Application-specific user preferences.

• Other application-specific data that may play a role in the process
of determining the user context, especially applications from the do-
main of personal information management (PIM), e.g. calendar, to-do
list, address book, etc.

After this, they differentiate some classes of information from the rest
on the basis that these could be modeled more or less independently from
the applications. A model based on the general relations between the
classes is presented. They utilize existing ontologies heavily for informa-
tion representation within each class:

• Documents: PRISM, which is an enhancement of Dublin Core

• Services: DAML-S

• Terminal profiles: UAProf

The modeling of locations and users in their approach is not considered
here further. Interestingly, they model user tasks with a hierarchical refine-
ment approach with relations “parent” and “subtask”. Tasks can also have

197

CHAPTER 8. CONTEXT MODELING

“after” and “before” relations with each other, making one task marked as
a prerequisite of another. While these relations are sensible and should be
taken into account somehow when modeling user tasks, it is questionable
how well a relatively static model based on these relations can be created
and maintained, or how these relations are going to be used if they are
inherently dynamic.

8.5.3 ASC-Model and Context Ontology Language (CoOL)

Strang et al. [SLPF03] describe a context modeling approach using on-
tologies as a formal fundament. They argue that approaches from the
early days of context modeling usually lack formality and are primarily
concerned with requirements for the model from the customer perspec-
tive. They introduce an “Aspect-Scale-Context (ASC) model” to close this
formality gap. The context information is divided into concepts and facts,
the relation of these being analogous to that of classes and their instances.
The Aspect-Scale-Context (ASC) model is named after the core concepts
of the model, which are aspect, scale, and context information. Each as-
pect aggregates one or more scales, and each scale aggregates one or
more pieces of context information:

An entity is a person, a place or in general an object. An
aspect is a classification, symbol- or value-range, whose sub-
sets are a superset of all reachable states, grouped in one or
more related dimensions called scales. A context is the set of
all context information characterizing the entities relevant for a
specific task in their relevant aspects. An entity is relevant for a
specific task, if its state is characterized at least concerning one
relevant aspect. An aspect is relevant, if the state with respect
to this aspect is accessed during a specific task or the state has
any kind of in influence on the task. A system is context-aware,
if it uses any kind of context information before or during ser-
vice provisioning. The situation is the set of all known context
information.

While similar to many other definitions of context, Strang et al try to
overcome the problem of describing contextual facts and interrelationships
in a precise and traceable manner by introducing the term aspect. Ontolo-
gies are used as a fundament to describe contextual facts and interrela-
tionships, which helps to reach a degree of formality adequate for auto-
matic interpretation capabilities of an implementation of the model.

198

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

A Context Ontology Language (CoOL) is derived from the ASC model.
An important conclusion that Strang et al have made based on an analysis
of languages that are built for describing ontologies is that these languages
have a common trade-off between knowledge representation and query-
ing. For this reason they define CoOL as a collection of fragments grouped
into two subsets. The first is CoOL Core, a projection of the ASC model
into two different ontology languages, namely OWL and F-Logic. The sec-
ond is CoOL Integration, a collection of schema and protocol extensions
as well as common sub-concepts of the ASC model.

F-Logic is a logic language combining object-oriented and predicate
logic characteristics. Being able to use multiple ontology languages helps
developers to choose the best tools for different tasks. While F-Logic is not
based on XML, it is more expressive than OWL and argued to be better
for specifying relevance conditions. Worthy of notice is that these defini-
tions mean that relevance is considered to be more than just spatial and/or
temporal proximity. An entity is considered relevant for a specific task if its
state is characterized at least concerning one relevant aspect. An aspect
is considered to be relevant if the state with respect to this aspect is ac-
cessed during a specific task or the state has any kind of influence on the
task.

Besides new enhancements to formalism and general approach, what
makes the ASC model and CoOL interesting is that the creators are able to
show how the ASC model can be used as a transfer model, using DAML-S
as an example. Further they show how the ASC model fits into a general-
purpose service model, namely the MNM Service Model from the Munich
Network Management team, and propose a system architecture that is
able to affect service interaction at any stage.

While the focus of the ASC Model and CoOL is on allowing service
interoperability on the context level, the approach seems to be promising
and worth further investigation also from general context information rep-
resentation and querying points of view.

8.5.4 Context Modeling via Dynamic Context Discovery

In a preliminary work, Thomson et al. [TRTN03] treat the problem of dis-
covering and composing appropriate context entities as a special case of
the more general problem of discovering and composing components in
software engineering, and thus adapt previous research in software reuse
to dynamic context discovery.

The infrastructure from their work is called the Strathclyde Context In-

199

CHAPTER 8. CONTEXT MODELING

frastructure (SCI). It is organized into two distinct layers. The upper layer of
the infrastructure is a network overlay of partially connected nodes and is
referred to as the SCINET. The lower layer of the infrastructure concerns
the contents of each node, which consists of entities (People, Software,
Places, Devices, and Artifacts) responsible for producing, managing, and
using contextual information, and is referred to as a Range.

The central concept in the approach is Range, which means a bounded
physical or logical area. Range is occupied by one Context Server, which
manages the other components and provides the means of communicat-
ing with other Ranges in a network.

Currently in the SCI, context information is represented as a configu-
ration of context entities. The goal is to express context information on an
abstract level, in terms of basic context elements and context operators,
instead of concrete context entities and configurations. Basic context el-
ements would be abstractions of context entities, and context operators
structures for composition of basic context elements to build higher-level
contexts.

To facilitate queries of this form, the context server of the Range is re-
placed with a semantically enhanced context trader. The context trader
performs similarly to current trading services in that it takes a request for
context information and returns a list of possible configurations sorted by
some user-specified properties. However, the context trader differs from
current trading services in that context entities include a behavioral spec-
ification as a part of their type description, and that matching of suitable
entities is based on specification matching techniques.

The approach is interesting, as it would couple tightly the resources
(services) producing context information to the formal representation of
context, and methods from service discovery and composition areas might
be used for context acquisition, etc. However, the feasibility of the ap-
proach is still an open question.

If the approach proves fruitful, it might easily be combined with e.g.
the ASC model by substituting Range with the ASC model’s definition of
Relevancy.

8.5.5 GAIA

GAIA is an infrastructure for Smart Spaces by the Department of Com-
puter Science at the University of Illinois [RMCM03, RHC+02]. Smart
Spaces are “ubiquitous computing environments that encompass physical
spaces”. GAIA is a meta-operating system that aims to support the devel-

200

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

opment and execution of portable applications for active spaces. Physical
spaces and the computing devices they contain are in essence converted
into a programmable computing system. This is done by offering services
to manage and program a space and its associated state.

GAIA seems to be among the first, if not the first, context infrastructure
to make extensive use of ontologies for context reasoning.

Architecture

GAIA is similar to traditional operating systems in that it manages the tasks
common to all applications built for physical spaces. Each space can work
independently, but may interact with other spaces.

The main contribution of Gaia is not in the individual ser-
vices, but instead, in the interaction of these services. This
interaction allows users and developers to abstract ubiquitous
computing environments as a single reactive and programma-
ble entity instead of a collection of heterogeneous individual
devices.

Three main components of GAIA are the Gaia Kernel, the Gaia Appli-
cation Framework, and the Applications. The five basic services are:

• The Event Manager Service uses a decoupled communication model
based on suppliers, consumers, and channels. It supports push,
pull, and hybrid mechanisms. Furthermore, it supports the creation
of named event channels and distribution of load.

• The Presence Service detects digital and physical entities that are
present in an active space.

• The Context Service allows applications to query and subscribe for
particular context information they are interested about.

• The Space Repository Service stores information on all software and
hardware entities contained in the space, and allows browsing and
retrieving them.

• The Context File System incorporates context into the traditional file
system model to provide support for mobile users, device hetero-
geneity, and data organization.

201

CHAPTER 8. CONTEXT MODELING

The infrastructure is started by using a bootstrap protocol to start the
basic services. GAIA uses CORBA to enable distributed entities to com-
municate with one another, but also customized solutions in order to han-
dle e.g. crashing components and maintaining resources.

Ontologies are used extensively in GAIA to achieve better interoperabil-
ity, not only in expressing context information, but also for different kinds
of applications, services, devices, data sources, and other kinds of entities
and the relations between them. Furthermore, axioms that must always
be satisfied on the properties of said entities can be established. The use
of ontologies is integrated via the Ontology Server, which maintains all the
ontologies and allows getting descriptions of entities in the environment,
meta-information about context, or definitions of terms used in GAIA. Sup-
port for semantic queries, e.g. classification of individuals, is planned in
the future.

GAIA has several components dedicated to context maintenance. Con-
text Providers obtain context from sensors, other Context Providers, or
other data sources. Context Consumers, e.g. context-aware applications,
can query them for context information. Context Providers can also have
an event channel where they send context events. Context Synthesiz-
ers are used to derive higher-level context information from sensed con-
text information and to provide inferred contexts to applications. Context
Provider Lookup Service can be used by Context Providers to advertise
the context they provide and by Context Consumers to find appropriate
Context Providers.

Context Representation

Context is represented as predicates in GAIA, the structure of the context
predicate depending on the type of context. Ontologies are used to define
the vocabulary and types of arguments that may be used in the predicates,
so that different entities have a common understanding of context. Ontol-
ogy can also be used for checking the validity of context information.

Ontologies make it also easier for humans to specify how different ap-
plications and services should behave in different contexts, as the types of
contexts that are available and their structure is known.

There are different types of contexts that can be used by ap-
plications. These include physical contexts (like location, time),
environmental contexts (weather, light and sound levels), infor-
mational contexts (stock quotes, sports scores), personal con-
texts (health, mood, schedule, activity), social contexts (group

202

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

activity, social relationships, whom one is in a room with), appli-
cation contexts (email, web-sites visited) and system contexts
(network traffic, status of printers).

Context predicates are expressed using a convention where the name
of the predicate is the type of context that is being described, for exam-
ple Location(Bob, in, room 603). The structure of the context predicate
depends on the type of context and this structure is defined in the ontol-
ogy. For example, location context information must have three fields: a
subject (person or object), a verb or a preposition like ‘entering’, ‘leaving’,
or ‘in’, and a location like a room or an address. Each type of context is
defined by a class in the ontology, for example the ‘Temperature’ context
is a subclass of the more generic ‘WeatherInformation’ context.

Predicate arguments can be arbitrarily complex structures, as the con-
text model makes no restriction on the types of values that different argu-
ments in the context predicate can take. It is up to individual entities to
interpret the location predicate appropriately. The use of ontologies helps
ensure that different entities will interpret the predicate in the same way.

Boolean operators can be used to form more complex context expres-
sions, for example: EnvironmentLighting(Room 3234, Off) OR Environ-
mentLighting(Room 603, Dim) refers to the context that the lighting in
Room 603 is either off or dim.

The model allows the use of universal and existential quantification over
variables. For example, expressing that Bob is in some location can be
written: ∃Locationy Location(Bob, In, y).

In order to make calculations decidable, the model is based on many-
sorted logic, where quantification is performed only over a specific domain
of values. Because quantification is performed only over finite sets, evalu-
ation of expressions with quantifications will always terminate.

One or more arguments of a context predicate can be a function re-
turning some value. These functions are written in the C language. The
presented representation formalism for context “can be mapped to any
representation format like plain text, XML, a tuple in a relational database,
or a serialized object”. In current implementation, the context predicate is
mapped to a serialized object which contains the first order expression in
a tree form.

Context Reasoning

The presented formalism based on first-order predicate logic allows the
derivation of new contexts from other contexts. As an example of using

203

CHAPTER 8. CONTEXT MODELING

rules to deduce new contexts based on existing context and to perform
sensor fusion in a generic way, the following example is given: Sound
(Room 603, “>”, 40 dB) AND Lighting (Room 603, Stroboscopic) AND nm-
bOfPeople (Room 603, “ >”, 6) ⇒ Social Activity (Room 603, Party) This
rule can be read as “a party is going on in a room if the level of sound in
the room is high, stroboscopic lights are on, and the number of people in
the room is greater than six.”

Context information can be aggregated. Aggregate context of a smart
space is the set of expressions involving context predicates that are true
in that particular smart space. Context expressions can be generated by
different Context Providers.

There are two basic protocols for obtaining context information: the
query-answer protocol and the subscribe-notify protocol. In the query-
answer protocol the query is given in a form similar to Prolog queries. In
the subscribe-notify protocol a requester subscribes to certain contexts
and gets notified whenever any of those contexts becomes true.

Applications can use context information in GAIA via rules that describe
what actions should be taken in different contexts, for example : IF Loca-
tion(Bob, entering, workplace) AND Time(morning) THEN turn computer
on. The ontologies make writing these kinds of simple rules easy via a UI
created for the purpose.

8.5.6 Context Broker Architecture (CoBrA)

Context Broker Architecture (CoBrA) is an architecture for supporting con-
text-aware systems in smart spaces. It explores the use of Semantic Web
languages for defining and publishing a context ontology, for sharing infor-
mation about a context, and for reasoning over such information [CFJ03].

Architecture

A context broker has the following components:

• The Context Knowledge Base is a persistent storage of the context
knowledge. It contains a set of ontologies for agents to describe
contextual information and to share context knowledge, and it pro-
vides a set of APIs for other components in a broker to access the
stored knowledge. Additionally it may contain heuristic knowledge
associated with the space (e.g., a company’s daily operation hours
are between 9:00 AM to 5:00 PM).

204

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

• The Context Reasoning Engine is a reactive inference engine that
reasons over the stored context knowledge.

• The Context Acquisition Module is a library of procedures that forms
a middleware abstraction for context acquisition.

• The Policy Management Module is a set of inference rules that de-
duce instructions for enforcing user policies.

The Context Reasoning Engine can cope with two types of inference:

• Inference that uses ontologies to deduce context knowledge.

• Inference that uses heuristic knowledge to detect and resolve incon-
sistent knowledge.

The role of the Context Acquisition Module is similar to the role of the
Context Widgets in the Context Toolkit [SDA99], which is to shield the low-
level sensing implementations from the high-level applications. This mod-
ule seems to be incorporated to the system architecture very recently as it
is mentioned only in the latest paper.

CoBrA maintains a model of the current context that can be
shared by all devices, services and agents in the same smart
space. The shared model is a repository of knowledge that
describes the context associated with an environment.

In the Policy Management Module a policy language is used to define
the permissions for different computing entities to share a particular piece
of context information, and rules for selecting the recipients to receive no-
tifications of context changes. Thus the users can protect their privacy by
granting or denying the system permission to use or share their contextual
information.

Context Representation

The ontologies of context are defined by using RDF and OWL, because
“they provide an explicit semantic representation of context that is suitable
for reasoning and knowledge sharing”. Based on these ontologies, the
context brokers “can infer context knowledge (e.g. user intentions, roles,
and duties) that cannot be easily acquired from the physical sensors, and
can detect and resolve inconsistent knowledge that often occurs as a result
of imperfect sensing”.

205

CHAPTER 8. CONTEXT MODELING

Instead of incorporating external ontologies, terms and organizations
are adopted from existing ontologies such as the DAMLTime/Time-Entry
ontology [Hob02], the OpenCyc spatial ontologies, the Friends-Of-A-Friend
(FOAF) ontology, and the FIPA device ontology. This is justified as import-
ing a substantial amount of irrelevant ontologies would hinder the perfor-
mance of ontology reasoning. The plan is to rely on the OWL ontology
mapping mechanism ([W3C03a]) in the future to support reasoning with
the foreign ontologies.

At the current state of the system (which authors nominate as “prelimi-
nary”), all computing entities in a smart space are presumed to have a pri-
ori knowledge about the presence of a context broker, and the high-level
agents are presumed to communicate with the broker using the standard
FIPA Agent Communication Language [FIP02].

Context Reasoning

CoBrA seems to have relatively good support for reasoning in the form
of different kinds of ontologies for its test-bed problem domain, intelligent
meeting room. In addition to ontology inference, Context Brokers can also
use logic inference to reason about contextual information. The Context
Reasoning Engine has a two-tier design. At present, the ontology infer-
ences on Tier 1 are limited to the OWL Lite subset of the OWL language.

As OWL does not support reasoning with uncertainty Tier 2 is for more
complex reasoning outside OWL expressiveness. Currently it has cus-
tomized rules for temporal reasoning and rules for interpreting the location
context of a person and the status of a meeting. By using the device on-
tology, the physical location ontology, and the temporal ontology together,
quite complicated and varied examples have been achieved.

8.5.7 SOCAM and CONON

Wang, Zhang, Gu and Pung have recently proposed [GWPZ04, WGZP04]
a Service-Oriented Context-Aware Middleware (SOCAM) and Context On-
tology (CONON).

Architecture

SOCAM aims to help application programmers build context-aware ser-
vices more efficiently. It has the following elements:

206

8.5. FORMAL APPROACHES TO CONTEXT REPRESENTATION

• Context Providers abstract contexts from different sources and con-
vert them to OWL representation so that contexts can be shared and
reused by other SOCAM components.

• The Context Interpreter consists of Context Reasoning Engines and
the Context KB (Knowledge Base).

• Context-aware Services make use of different levels of contexts and
adapt the way they behave according to the current context.

• The Service Locating Service provides a mechanism where the Con-
text Providers and the Context Interpreter can advertise their pres-
ences.

The Context Reasoning Engines provide context reasoning services in-
cluding inferring deduced contexts, resolving context conflicts, and main-
taining the consistency of the Context KB. Other components can query,
add, delete, or modify context knowledge stored in the Context Database
by using the service of the Knowledge Base.

SOCAM is said to be in prototype stage currently. The aim is to realize
a scenario of a context-aware home, where various computing devices
and physical sensors are present. The home network is connected to the
Internet and the Context Interpreter is running on the OSGi gateway and
implemented based on the semantic web toolkit Jena2. Thus SOCAM
seems to be targeted for reasonably light weight use, and scalability is not
very much an issue.

Context Representation

Perhaps a more interesting and unique part of the system is the Context
Ontology CONON. Like for the majority of reviewed context ontologies,
OWL is used also for CONON. While the authors acknowledge that “com-
pletely formalizing all context information is likely to be an insurmountable
task”, they still believe however, that location, user, activity, and compu-
tational entity are “the most fundamental context for capturing the infor-
mation about the executing situation”. They form the skeleton of context
ontology and also act as indices into associated contextual information.

CONON is divided into an upper ontology and a set of domain specific
ontologies. The low-level ontology in each subdomain can be dynamically
plugged into and unplugged from the upper ontology when the environ-
ment is changed, for example between home, car, and work environments.

207

CHAPTER 8. CONTEXT MODELING

In the CONON upper ontology, the class ContextEntity provides an en-
try point of reference to the upper ontology: each user, agent, or service
has their own instance of it. It has the subclasses Person, Location, Com-
pEntity, and Activity. The refinement of the concepts of upper ontology is
done in domain-specific ontologies.

In order to facilitate reasoning about the reliability of information, con-
text information is classified into different types based on how its value is
formed:

• Sensed context information gets its value based on physical or virtual
sensors, e.g. sensor reading of a GPS device or web service call to
a GSM location service.

• Defined context information is defined e.g. by a user or a device
manufacturer. For example, a user’s name or food preferences and
the amount of memory on device are defined context information.
Thus the defined value may change, but is often relatively static.

• Aggregated context information is obtained by joining, or aggregat-
ing, sensed or defined context. For example, family food preferences
can be aggregated from family members’ food preferences.

• Deduced context information can be obtained by using a context rea-
soning engine.

These are implemented with the additional owl:classifiedAs OWL property.
Also, quality of the context information is modeled by using four types

of quality parameters:

• Accuracy: the range in terms of measurement

• Resolution: the smallest perceivable element

• Certainty: the probability of the state being certain

• Freshness: the production time and average lifetime of a measure-
ment

Dependencies between different bits of context information are cap-
tured with the additional property rdfs:dependsOn. For example, in Fig-
ure 8.1 the feasibility of some scheduled activity is dependent on the per-
son’s location and weather, and the feasibility is modeled by the feasible
property of the ScheduledActivity class.

208

8.6. DISCUSSION

<owl:ObjectProperty rdf:ID="feasible">
<rdfs:domain rdf:resource="ScheduledActivity"/>
<rdfs:dependsOn rdf:resource="locatedAt"/>
<rdfs:dependsOn rdf:resource="weatherCondition"/>

</owl:ObjectProperty>

Figure 8.1: An Example of expressing a dependency with OWL

Context Reasoning

Reasoning in SOCAM is divided into two parts: ontology reasoning and
user-defined reasoning. CONON uses only the axioms entailed by OWL
Lite, so ontology reasoning can be done relatively efficiently. On the other
hand, more flexible first-order-logic-based user-defined reasoning is avail-
able for reasoning about high-level contexts like “what is the user’s activity
now”. User-defined reasoning resembles the reasoning of GAIA a lot, but
as the rule base is divided, and e.g. reasoning about location may in many
situations be feasible by using description logic, reasoning in whole can be
much more efficient in general.

This distinction between two different reasoning methods is interesting,
as it reminds of the distinction of the CoBrA Context Reasoning Engine in-
troduced earlier and thus further reinforces the idea that context reasoning
is best achieved by intervening more than one reasoning methods.

Interesting test results obtained by using standard home PCs and the
whole CYC Upper Ontology merged with CONON are given. They show
that with this setup reasoning for non-time-critical applications is feasible.
On the other hand, real-time requirements for time-critical reasoning like
phone call redirection are not really feasible without limiting the size of
context datasets taken into account.

8.6 Discussion

A key advantage of using a formal model for context is that one can clearly
specify the power and expressiveness of the model. In other words, it is
clear what kinds of contexts can or cannot be expressed, what kinds of
rules can or cannot be evaluated, and which queries are decidable and
which are not [RC03]. On the other hand, understanding context and its

209

CHAPTER 8. CONTEXT MODELING

meaning in respect to some problem domain better is needed in order to
be able to assemble meaningful ontologies for different domains.

Context awareness can be, and indeed for many applications is, grad-
ual in the sense that the amount of relevant information found and deduc-
tion that can be done based on it often determines the quality of adap-
tation. It is also clear that the definition of context by Dey et al is not far
fetched at all. Thus the challenge for context modeling is that it should
be possible to infer what information is relevant at a given context. This
presents a big problem as the relevancy of the given information might de-
pend on various things, and the relevancy can also change very rapidly.
Thus a truly sophisticated context-aware system should try to anticipate
the changes in context as well as possible in order to adapt to the new
situation in a timely manner. Although these themes have been under in-
vestigation e.g. in situation awareness (SAW) systems [MKBL03], the cur-
rent state of the art still has much room for improvement. The difference
between situation awareness and context awareness is subtle. One view
point is that “situation” is usually understood as more specific to some
problem domain, the domain being usually characterized by time-critical
tasks.

Although Gu et al state that “it would be easy to specify the context in
one domain in which a specific range of context is of interest” [GWPZ04],
it is far from clear how this range can be specified for different application
domains in such a way that the reasoning is feasible and also produces
worthwhile results. The “range of interest” can in fact be identified as the
relevancy (‘dependency’ is sometimes used synonymously) of a given bit
of context information, and may thus change rapidly. Further, relevancy
itself is context dependent. For this reason it could be that relevancy is
best modeled independently of formal reasoning, and only fairly static de-
pendencies are modeled by the same representation.

It is clear that many times logical deduction will produce erroneous
results; the world and human behavior are too complex to ever be cap-
tured perfectly by logics. If the applications do not have any indication of
the quality, trustworthiness, and reliability of the context information, they
will produce erroneous results too often to be “intelligent”, or even usable.
Thus these dimensions of information should be modeled somehow. An
open question is how this is done in the best, or even a “good enough”,
way. We believe that for many applications the utility and cost of per-
forming actions (or not performing them) based on reasoning should be
incorporated to models somehow.

From the architectural point of view, perhaps the main result is that the
presented formalisms seem to be in general relatively architecture-inde-

210

8.6. DISCUSSION

pendent. This suggests that we can, at least to some extent, separate the
concerns of representing context information and maintaining it between
different system components and systems. The maintenance within one
component is of course dependent on the representation of information,
but the work of e.g. Tazari [Taz03] suggests that this might not be a major
problem.

Concerning the mobile environment, a particular concern is the pos-
sibility to bound the amount of facts that are taken into account when
inferring. There are basically three ways to do this. The first one is to
create and use domain-specific ontologies always when they are avail-
able. These domain ontologies should pose knowledge of the domain in
a “stricter package” than general ontologies can. The second way is to
bound the amount of context information considered when reasoning, e.g.
by using some estimation of relevancy. The third is to discard some facts
based on their weak quality of information, but this last way does not help
much in the case of a large ontology.

The research of ontologies, more specifically the evolution and man-
agement of dependent ontologies in a distributed environment, is crucial
for large scale context-aware systems. As the vast majority of context
representation formalisms expressive enough for reasoning have been
formed during the last and this year, it is clear that there exist many re-
search opportunities for forming ontologies and models suitable for spe-
cific problem domains. The maturation of the Semantic Web tools will likely
enable reasonably good interoperability, although distributed ontology evo-
lution still has a long road ahead of it before it can be done automatically.

211

CHAPTER 8. CONTEXT MODELING

212

Bibliography

[AAH+02] Heikki Ailisto, Petteri Alahuhta, Ville Haataja, Vesa Kyllönen,
and Mikko Lindholm. Structuring context aware applications:
Five-layer model and example case. Concepts and Mod-
els for Ubiquitous Computing Workshop, September 2002.
(Position paper) http://www.comp.lancs.ac.uk/computing/
users/dixa/conf/ubicomp2002-models/papers-list.html.

[ABG02] Joe Abley, Benjamin Black, and Vijay Gill. Requirements
for IPv6 Site-Multihoming Architectures, May 2002. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
ietf-multi6-multihoming-requirements-03.txt.

[AS01a] Knarig Arabshian and Henning Schulzrinne. SIP-based
emergency notification system. Technical report, De-
partment of Computer Science, Columbia University,
November 2001. http://www1.cs.columbia.edu/~knarig/
EmergencyAlert.pdf.

[AS01b] Olivier Avaro and Philippe Salembier. MPEG-7 systems:
Overview. IEEE Transactions on Circuits and Systems for
Video Technology, 11(6):760–764, June 2001.

[AS03] Knarig Arabshian and Henning Schulzrinne. A SIP-based
medical event monitoring system. In 5th International Work-
shop on Enterprise Networking and Computing in Health-
care Industry, June 2003. http://www1.cs.columbia.edu/
~knarig/sipMed.pdf.

[ASC+00] Bob Aiken, John Strassner, Brian E. Carpenter, Ian Foster,
Clifford Lynch, Joe Mambretti, Reagan Moore, and Benjamin
Teitelbaum. RFC 2768: Network Policy and Services: A Re-
port of a Workshop on Middleware. Internet Engineering Task
Force, February 2000.

213

http://www.comp.lancs.ac.uk/computing/users/dixa/conf/ubicomp2002-models/papers-list.html
http://www.comp.lancs.ac.uk/computing/users/dixa/conf/ubicomp2002-models/papers-list.html
http://www.ietf.org/internet-drafts/draft-ietf-multi6-multihoming-requirements-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-multi6-multihoming-requirements-03.txt
http://www1.cs.columbia.edu/~knarig/EmergencyAlert.pdf
http://www1.cs.columbia.edu/~knarig/EmergencyAlert.pdf
http://www1.cs.columbia.edu/~knarig/sipMed.pdf
http://www1.cs.columbia.edu/~knarig/sipMed.pdf

BIBLIOGRAPHY

[Bar01] Dave Bartlett. CORBA junction: CORBA 3.0 notification ser-
vice, May 2001. http://www-106.ibm.com/developerworks/
webservices/library/co-cjct8/.

[BB02] Guruduth Banavar and Abraham Bernstein. Software infra-
structure and design challenges for ubiquitous computing ap-
plications. Communications of the ACM, 45(12):92–96, De-
cember 2002.

[BBHS00] Peter Braam, Robert Baron, Jan Harkes, and Marc
Schnieder. The Coda HOWTO, version 1.01, January 2000.
http://www.coda.cs.cmu.edu/doc/html/coda-howto.html.

[BDNFT00] Giovanni Bricconi, Elisabetta Di Nitto, Alfonso Fuggetta, and
Emma Tracanella. Analyzing the behavior of event dispatch-
ing systems through simulation. In Proceedings of the 7th
International Conference on High Performance Computing,
pages 131–140, December 2000.

[BDNT00] Giovanni Bricconi, Elisabetta Di Nitto, and Emma Tracanella.
Issues in analyzing the behavior of event dispatching sys-
tems. In Proceedings of the 10th International Workshop
on Software Specification and Design, page 95, November
2000.

[BKS+99] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E.
Strom, Daniel C. Sturman, and Wei Tao. Information flow
based event distribution middleware. In Wei Sun, Sam Chan-
son, Doug Tygar, and Partha Dasgupta, editors, ICDCS
Workshop on Electronic Commerce and Web-based Appli-
cations, pages 114–121, June 1999.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–
426, July 1970.

[BLR+04] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Michael Walfish. A
layered naming architecture for the internet. In ACM SIG-
COMM 2004, September 2004. http://nms.lcs.mit.edu/
papers/layerednames-sigcomm04.pdf.

214

http://www-106.ibm.com/developerworks/webservices/library/co-cjct8/
http://www-106.ibm.com/developerworks/webservices/library/co-cjct8/
http://www.coda.cs.cmu.edu/doc/html/coda-howto.html
http://nms.lcs.mit.edu/papers/layerednames-sigcomm04.pdf
http://nms.lcs.mit.edu/papers/layerednames-sigcomm04.pdf

BIBLIOGRAPHY

[BMH+00] Jean Bacon, Ken Moody, Richard Hayton, et al. Generic sup-
port for distributed applications. IEEE Computer, 33(3):68–
76, March 2000.

[BMT04] BEA, Microsoft, TIBCO. Web Services Eventing (WS-
Eventing), January 2004. http://xml.coverpages.org/WS-
Eventing200401.pdf.

[BN99] Peter Braam and Philip Nelson. Removing bottlenecks in dis-
tributed filesystems: Coda and InterMezzo as examples. In
Proceedings of Linux Expo 1999, May 1999. http://www.
inter-mezzo.org/docs/bottlenecks.pdf.

[BP98] Sundar Balasubramaniam and Benjamin C. Pierce. What is
a file synchronizer? In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing
and Networking, pages 98–108, October 1998.

[BPSK97] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Se-
shan, and Randy H. Katz. A comparison of mechanisms for
improving TCP performance over wireless links. IEEE/ACM
Transactions on Networking, 5(6):756–769, December 1997.

[Bra98] Peter Braam. The Coda distributed file system. Linux Journal,
50, June 1998.

[Bra02] Peter Braam. InterMezzo: File synchronization with Inter-
Sync, version 0.9.3, March 2002. http://www.inter-mezzo.
org/docs/intersync.pdf.

[BSSW03] Stefan Berger, Henning Schulzrinne, Stylianos Sidiroglou,
and Xiaotao Wu. Ubiquitous computing using SIP. In Pro-
ceedings of the 13th International workshop on Network
and operating systems support for digital audio and video,
pages 82–89, June 2003. http://www.cs.columbia.edu/
IRT/papers/Berg0306_Ubiquitous.pdf.

[Buc02] David Buchmann. SyncML (Synchronization Markup Lan-
guage) and its Java implementation sync4j. Master’s the-
sis, University of Fribourg, Fribourg, Switzerland, September
2002.

[Cam01] Gonzalo Camarillo. SIP Demystified. McGraw-Hill, New York,
New York, August 2001.

215

http://xml.coverpages.org/WS-Eventing200401.pdf
http://xml.coverpages.org/WS-Eventing200401.pdf
http://www.inter-mezzo.org/docs/bottlenecks.pdf
http://www.inter-mezzo.org/docs/bottlenecks.pdf
http://www.inter-mezzo.org/docs/intersync.pdf
http://www.inter-mezzo.org/docs/intersync.pdf
http://www.cs.columbia.edu/IRT/papers/Berg0306_Ubiquitous.pdf
http://www.cs.columbia.edu/IRT/papers/Berg0306_Ubiquitous.pdf

BIBLIOGRAPHY

[Cam03] Stefano Campadello. Middleware Infrastructure for Dis-
tributed Mobile Applications. PhD thesis, University of Hel-
sinki, Department of Computer Science, Helsinki, Finland,
April 2003. http://ethesis.helsinki.fi/julkaisut/mat/
tieto/vk/campadello/.

[CCW03] Mauro Caporuscio, Antonio Carzaniga, and Alexander L.
Wolf. Design and evaluation of a support service for mo-
bile, wireless publish/subscribe applications. Technical Re-
port CU-CS-944-03, Department of Computer Science, Uni-
versity of Colorado, January 2003.

[CDKR02] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony Rowstron. Scribe: A large-scale and decentralised
application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communication, 20(8), October 2002.

[CDN01] Gianpaolo Cugola and Elisabetta Di Nitto. Using a publish/-
subscribe middleware to support mobile computing. In Mid-
dleware for Mobile Computing Workshop, November 2001.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta.
The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27(9):827–850, September 2001.

[CDNP00] Gianpaolo Cugola, Elisabetta Di Nitto, and Gian Pietro Picco.
Content-based dispatching in a mobile environment. In Work-
shop su Sistemi Distribuiti: Algorithmi, Architectture e Lin-
guaggi, September 2000.

[CDW01] Antonio Carzaniga, Jing Deng, and Alexander L. Wolf. Fast
forwarding for content-based networking. Technical Report
CU-CS-922-01, Department of Computer Science, University
of Colorado, November 2001.

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An intelligent
broker for context-aware systems. In Adjunct Proceedings
of Ubicomp 2003, pages 183–184, October 2003.

[CFJ04] Harry Chen, Tim Finin, and Anupam Joshi. A context bro-
ker for building smart meeting rooms. In Proceedings of
the Knowledge Representation and Ontology for Autonomous

216

http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/campadello/
http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/campadello/

BIBLIOGRAPHY

Systems Symposium, 2004 AAAI Spring Symposium, March
2004.

[Chi99] J. Noel Chiappa. Endpoints and Endpoint Names: A Pro-
posed Enhancement to the Internet Architecture, 1999. http:
//users.exis.net/~jnc/tech/endpoints.txt.

[CHKT03] Scott Cantor, Jeff Hodges, John Kemp, and Peter Thomp-
son. Liberty ID-FF Architecture Overview, version 1.2. Liberty
Alliance, 2003. http://www.projectliberty.org/specs/
liberty-idff-arch-overview-v1.2.pdf.

[Cis03] Cisco Systems. Cisco IOS SIP Configuration Guide, Novem-
ber 2003. http://www.cisco.com/univercd/cc/td/doc/
product/software/ios123/123cgcr/vvfax_c/callc_c/
sipc1_c/sipconf.pdf.

[CRW99] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Interfaces and algorithms for a wide-area event notifi-
cation service. Technical Report CU-CS-888-99, Department
of Computer Science, University of Colorado, October 1999.
revised May 2000.

[CSZ03] Yuan Chen, Karsten Schwan, and Dong Zhou. Oppor-
tunistic channels: Mobility-aware event delivery. In ACM/I-
FIP/USENIX International Middleware Conference 2003,
pages 182–201, June 2003. http://link.springer.de/
link/service/series/0558/bibs/2672/26720182.htm.

[CW01] Antonio Carzaniga and Alexander L. Wolf. Content-based
networking: A new communication infrastructure. In NSF
Workshop on an Infrastructure for Mobile and Wireless Sys-
tems, October 2001.

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a
content-based network. In Proceedings of 2003 conference
on Applications, technologies, architectures, and protocol for
computer communications, pages 163–174, August 2003.

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a better under-
standing of context and context-awareness. Technical Report
GIT-GVU-99-22, College of Computing, Georgia Institute of
Technology, 1999. ftp://ftp.cc.gatech.edu/pub/gvu/tr/
1999/99-22.pdf.

217

http://users.exis.net/~jnc/tech/endpoints.txt
http://users.exis.net/~jnc/tech/endpoints.txt
http://www.projectliberty.org/specs/liberty-idff-arch-overview-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idff-arch-overview-v1.2.pdf
http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/vvfax_c/callc_c/sipc1_c/sipconf.pdf
http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/vvfax_c/callc_c/sipc1_c/sipconf.pdf
http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/vvfax_c/callc_c/sipc1_c/sipconf.pdf
http://link.springer.de/link/service/series/0558/bibs/2672/26720182.htm
http://link.springer.de/link/service/series/0558/bibs/2672/26720182.htm
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf

BIBLIOGRAPHY

[DAMV00] Mark Day, Sonu Aggarwal, Gordon Mohr, and Jesse Vin-
cent. RFC 2779: Instant Messaging / Presence Protocol Re-
quirements. Internet Engineering Task Force, February 2000.
http://www.ietf.org/rfc/rfc2779.txt.

[Dey01] Anind K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5(1):4–7, February 2001.

[DRS00] Mark Day, Jonathan Rosenberg, and Hiroyasu Sugano.
RFC 2778: A Model for Presence and Instant Messaging. In-
ternet Engineering Task Force, February 2000. http://www.
ietf.org/rfc/rfc2778.txt.

[DSBE03] John S. Davis, Daby M. Sow, Marion Blount, and Maria R.
Ebling. Context tailor: Towards a programming model for
context-aware computing. In 1st International ACM Work-
shop on Middleware for Pervasive and Ad-Hoc Computing,
pages 68–75, June 2003.

[DSDE03] John S. Davis, Daby M. Sow, Angela B. Dalton, and Maria R.
Ebling. Context-sensitive invocation using the context tai-
lor infrastructure. In Fifth Annual Conference on Ubiquitous
Computing, October 2003, October 2003.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatow-
icz, and Ion Stoica. Towards a common API for struc-
tured peer-to-peer networks. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems, volume
2735 of Lecture Notes in Computer Science, pages 33–44.
Springer, February 2003. http://oceanstore.cs.berkeley.
edu/publications/.

[E+97] W. Keith Edwards et al. Designing and implementing asyn-
chronous collaborative applications with Bayou. In Proceed-
ings of 10th annual ACM Symposium on User Interface Soft-
ware and Technology, pages 119–128, October 1997.

[EBDN03] Keith Edwards, Victoria Bellotti, Anind K. Dey, and Mark New-
man. Stuck in the middle: The challenges of user-centered
design and evaluation for middleware. In Conference on Hu-
man Factors in Computing Systems, pages 297–304, apr
2003.

218

http://www.ietf.org/rfc/rfc2779.txt
http://www.ietf.org/rfc/rfc2778.txt
http://www.ietf.org/rfc/rfc2778.txt
http://oceanstore.cs.berkeley.edu/publications/
http://oceanstore.cs.berkeley.edu/publications/

BIBLIOGRAPHY

[EBS01] Greg Eisenhauer, Fabián Bustamante, and Karsten Schwan.
A middleware toolkit for client-initiated service specialization.
ACM SIGOPS Operating Systems Review, 35(2):7–20, April
2001.

[Egg04] Lars Eggert. Host Identity Protocol (HIP) Rendezvous
Mechanisms. Internet Engineering Task Force, Febru-
ary 2004. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-eggert-hip-rendezvous-00.txt.

[EL04a] Lars Eggert and J. Laganier. Host Identity Proto-
col (HIP) Rendezvous Extensions. Internet Engineer-
ing Task Force, July 2004. [Internet Draft], Work in
progress, http://www.ietf.org/internet-drafts/draft-
eggert-hip-rvs-00.txt.

[EL04b] Lars Eggert and M. Liebsch. Design Aspects of Host
Identity Protocol (HIP) Rendezvous Mechanism. Inter-
net Engineering Task Force, July 2004. [Internet Draft],
Work in progress, http://www.ietf.org/internet-drafts/
draft-eggert-hip-rendezvous-01.txt.

[Ere01] Justin R. Erenkrantz. Handling hierarchical events in an
internet-scale event service, March 2001. http://www.ucf.
ics.uci.edu/~jerenk/siena-xml/SienaPaper.html.

[Fan02] Nicola Fankhauser. A real world application of SyncML based
on open source components. Seminar work, University of
Fribourg, Fribourg, Switzerland, December 2002.

[FGKZ03] Ludger Fiege, Felix C. Gartner, Oliver Kasten, and Andreas
Zeidler. Supporting mobility in content-based publish/sub-
scribe middleware, June 2003. http://citeseer.nj.nec.
com/kasten03supporting.html.

[FGM+99] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk
Nielsen, Larry Masinter, Paul Leach, and Tim Berners-Lee.
RFC 2616: Hypertext Transfer Protocol — HTTP/1.1. Internet
Engineering Task Force, June 1999. http://www.ietf.org/
rfc/rfc2616.txt.

[FIP01] Foundation for Intelligent Physical Agents, Geneva, Switzer-
land. FIPA Ontology Service Specification, August 2001.
http://www.fipa.org/.

219

http://www.ietf.org/internet-drafts/draft-eggert-hip-rendezvous-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-hip-rendezvous-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-hip-rvs-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-hip-rvs-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-hip-rendezvous-01.txt
http://www.ietf.org/internet-drafts/draft-eggert-hip-rendezvous-01.txt
http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html
http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html
http://citeseer.nj.nec.com/kasten03supporting.html
http://citeseer.nj.nec.com/kasten03supporting.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.fipa.org/

BIBLIOGRAPHY

[FIP02] Foundation for Intelligent Physical Agents, Geneva, Switzer-
land. FIPA ACL Message Structure Specification, December
2002. http://www.fipa.org/.

[FY01] Gerhard Fischer and Yunwen Ye. Exploiting context to make
delivered information relevant to tasks and users. In Work-
shop on User Modelling for Context-Aware Applications, 8th
International Conference on User Modeling, July 2001.

[GA02] Jean-loup Gailly and Mark Adler. zlib 1.1.4 Manual, March
2002. http://www.gzip.org/zlib/manual.html.

[GCSO01] Pradeep Gore, Ron Cytron, Douglas Schmidt, and Carlos
O’Ryan. Designing and optimizing a scalable CORBA noti-
fication service. ACM SIGPLAN Notices, 36(8):196–204, Au-
gust 2001.

[GdMCA02] Hrishikesh Gossain, Carlos de Morais Cordeiro, and
Dharma P. Agrawal. Multicast: Wired to wireless. IEEE Com-
munications Magazine, 40(6):116–123, June 2002.

[GM02] Miguel Garcia-Martin. 3rd-Generation Partnership Project
(3GPP) Release 5 requirements on the Session Initiation Pro-
tocol (SIP). Internet Engineering Task Force, October 2002.
[Internet Draft] http://www.iptel.org/info/players/ietf/
3gpp/draft-ietf-sipping-3gpp-r5-requirements-00.txt.

[Gru93] Tom Gruber. A translation approach to portable ontologies.
Journal of Knowledge Acquisition, 5(2):199–220, June 1993.

[GS00] Marc Girardot and Neel Sundaresan. Millau: an encoding
format for efficient representation and exchange of XML over
the Web. In Ninth International World Wide Web Conference,
May 2000. http://www9.org/w9cdrom/154/154.html.

[GWPZ04] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing
Zhang. An ontology-based context model in intelligent envi-
ronments. In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference,
January 2004.

[HBS02] Albert Held, Sven Buchholz, and Alexander Schill. Model-
ing of context information for pervasive computing applica-
tions. In Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics, July 2002.

220

http://www.fipa.org/
http://www.gzip.org/zlib/manual.html
http://www.iptel.org/info/players/ietf/3gpp/draft-ietf-sipping-3gpp-r5-requirements-00.txt
http://www.iptel.org/info/players/ietf/3gpp/draft-ietf-sipping-3gpp-r5-requirements-00.txt
http://www9.org/w9cdrom/154/154.html

BIBLIOGRAPHY

[HC98] Dan Harkins and Dave Carrel. RFC 2409: The Internet Key
Exchange (IKE). Internet Engineering Task Force, November
1998. http://www.ietf.org/rfc/rfc2409.txt.

[HD02] Klaus Marius Hansen and Christian Heide Damm. Instant
collaboration — using context-aware instant messaging for
session management in distributed collaboration tools. In
Proceedings of the second Nordic conference on Human-
computer interaction, pages 279–282, October 2002.

[Hei01] Dennis Heimbigner. Adapting publish/subscribe middleware
to achieve Gnutella-like functionality. In Proceedings of the
2001 ACM Symposium on Applied Computing, pages 176–
181, March 2001.

[Hen03] Thomas R. Henderson. Host mobility for IP networks: A com-
parison. IEEE Network Magazine, 17(6):18–26, November
2003.

[HKZ02] Abdelsalam Helal, Abhinav Khushraj, and Jinsuo Zhang. In-
cremental hoarding and reintegration in mobile environments.
In Proceedings of the 2002 Symposium on Applications and
the Internet, pages 8–11, February 2002.

[HM02] Jeff Hodges and Bob Morgan. RFC 3377: Lightweight Di-
rectory Access Protocol (v3): Technical Specification. Inter-
net Engineering Task Force, September 2002. http://www.
ietf.org/rfc/rfc3377.txt.

[HMN+00] Mads Haahr, Rene Meier, Paddy Nixon, Vinny Cahill, and
Eric Jul. Filtering and scalability in the ECO distributed event
model. In PDSE, pages 83–95, 2000.

[Hob02] Jerry R. Hobbs. A DAML ontology of time, Novem-
ber 2002. http://www.cs.rochester.edu/~ferguson/daml/
daml-time-20020830.txt.

[HP94] John S. Heidemann and Gerald J. Popek. File-system de-
velopment with stackable layers. ACM Transactions on Com-
puter Systems, 12(1):58–89, February 1994.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating
noninterfering versions of programs. ACM Transactions on

221

http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc3377.txt
http://www.ietf.org/rfc/rfc3377.txt
http://www.cs.rochester.edu/~ferguson/daml/daml-time-20020830.txt
http://www.cs.rochester.edu/~ferguson/daml/daml-time-20020830.txt

BIBLIOGRAPHY

Programming Languages and Systems, 11(3):345–387, July
1989.

[HS96] Scott E. Hudson and Ian Smith. Techniques for addressing
fundamental privacy and disruption tradeoffs in awareness
support systems. In Conference of Computer Supported Co-
operative Work ’96, ACM, pages 248–257, November 1996.

[HSSR99] Mark Handley, Henning Schulzrinne, Eve Schooler, and
Jonathan Rosenberg. RFC 2543: SIP: Session Initiation
Protocol. Internet Engineering Task Force, March 1999.
http://www.ietf.org/rfc/rfc2543.txt.

[IBM02a] IBM. Gryphon: Publish/subscribe over public networks., De-
cember 2002. (White paper) http://www.research.ibm.
com/gryphon/Gryphon/Gryphon-Overview.pdf.

[IBM02b] IBM. MQSeries Everyplace for Multiplatforms Version 1,
Release 2, 2002. (White paper) http://www-3.ibm.com/
software/ts/mqseries/everyplace/v12/whitepaper.html.

[ION02] IONA. CORBA Notification Server Guide, version 5.1, April
2002. http://www.iona.com/support/docs/e2a/asp/5.0/
enterprise.xml.

[IRD03] Infrared Data Association (IrDA). Object Exchange Proto-
col OBEX, January 2003. http://www.irda.org/standards/
specifications.asp.

[ISO86] International Organization for Standardization, Geneva,
Switzerland. ISO 8879:1986. Information Processing — Text
and Office Systems — Standard Generalized Markup Lan-
guage (SGML), 1986.

[IWR02] Ellen Isaacs, Alan Walendowski, and Dipti Ranganathan.
Hubbub: A sound-enhanced mobile instant messenger that
supports awareness and opportunistic interactions. In Pro-
ceedings of the Conference on Computer-Human Interaction,
pages 179–186, April 2002.

[IWW+02] Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J.
Schiano, and Candace Kamm. The character, functions, and
styles of instant messaging in the workplace. In Proceedings

222

http://www.ietf.org/rfc/rfc2543.txt
http://www.research.ibm.com/gryphon/Gryphon/Gryphon-Overview.pdf
http://www.research.ibm.com/gryphon/Gryphon/Gryphon-Overview.pdf
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html
http://www.iona.com/support/docs/e2a/asp/5.0/enterprise.xml
http://www.iona.com/support/docs/e2a/asp/5.0/enterprise.xml
http://www.irda.org/standards/specifications.asp
http://www.irda.org/standards/specifications.asp

BIBLIOGRAPHY

of the 2002 ACM conference on Computer supported coop-
erative work, pages 11–20. ACM Press, November 2002.

[JBA01] Ravi Jain, John-Luc Bakker, and Farooq Anjum. Java Call
Control (JCC) and Session Initiation Protocol. IEICE Trans-
actions on communications, E84-B(12), December 2001.

[Jel02] Rick Jelliffe. The Schematron Assertion Language 1.5.
Academia Sinica Computing Centre, October 2002. http:
//xml.ascc.net/resource/schematron/Schematron2000.
html.

[JHE99] Jin Jing, Abdelsalam Helal, and Ahmed Elmagarmid. Client-
server computing in mobile environments. ACM Computing
Surveys, 31(2):117–157, June 1999.

[JN02] Christophe Jelger and Thomas Noel. Multicast for mobile
hosts in IP networks: Progress and challenges. IEEE Wire-
less Communications, 9(5), October 2002.

[Jus01] Jari Juslin. Navigointi WAP-sovelluksissa. Master’s thesis,
University of Helsinki, Department of Computer Science, Hel-
sinki, Finland, August 2001.

[K+00] John Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In Proceedings of the Ninth
international Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, November
2000.

[KA98a] Stephen Kent and Randall Atkinson. RFC 2401: Security
Architecture for the Internet Protocol. Internet Engineering
Task Force, November 1998. http://www.ietf.org/rfc/
rfc2401.txt.

[KA98b] Stephen Kent and Randall Atkinson. RFC 2406: IP En-
capsulating Security Payload (ESP). Internet Engineering
Task Force, November 1998. http://www.ietf.org/rfc/
rfc2406.txt.

[Kar03] Gerald Karner. A novel call control system for broadband
satellite systems. In IP Networking over Satellite Workshop
2003, May 2003. http://telecom.esa.int/telecom/media/
document/karner.pdf.

223

http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2406.txt
http://www.ietf.org/rfc/rfc2406.txt
http://telecom.esa.int/telecom/media/document/karner.pdf
http://telecom.esa.int/telecom/media/document/karner.pdf

BIBLIOGRAPHY

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Josh. A policy lan-
guage for a pervasive computing environment. In IEEE 4th
International Workshop on Policies for Distributed Systems
and Networks, pages 63–76, June 2003.

[Kis01] Roman Kiss. Using the COM+ event system in .Net appli-
cations, September 2001. http://www.codeproject.com/
csharp/solutionlcenotification.asp.

[Kiv04] Tero Kivinen. MOBIKE protocol, February 2004. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
kivinen-mobike-protocol-00.txt.

[KMP+00] Malleswar Kalla, Ken Morneault, Vern Paxson, Ian Rytina,
Hanns Jürgen Schwarzbauer, Chip Sharp, Randall Stewart,
Tom Taylor, Qiaobing Xie, and Lixia Zhang. RFC 2960:
Stream Control Transmission Protocol. Internet Engineer-
ing Task Force, October 2000. http://www.ietf.org/rfc/
rfc2960.txt.

[Kom02] Miika Komu. Host identity payload in home networks. Semi-
nar paper, Helsinki University of Technology, Espoo, Finland,
April 2002.

[Kom04] Miika Komu. Application programming interfaces for the host
identity protocol. Master’s thesis, Helsinki University of Tech-
nology, September 2004. http://hipl.hiit.fi/hipl/hip-
native-api-final.pdf.

[Kra03] Hugo Krawczyk. SIGMA: ’SIGn-and-MAc’ Approach to Au-
thenticated Diffie-Hellman and its Use in the IKE Protocols,
June 2003. http://www.ee.technion.ac.il/~hugo/sigma.
ps.

[KTR03] Jaakko Kangasharju, Sasu Tarkoma, and Kimmo
Raatikainen. Comparing SOAP performance for various
encodings, protocols, and connections. In Marco Conti,
Silvia Giordano, Enrico Gregori, and Stephan Olariu, edi-
tors, Personal Wireless Communications, pages 397–406,
September 2003.

[Kub03] John Kubiatowicz. Extracting guarantees from chaos. Com-
munications of the ACM, 46(2):33–38, February 2003.

224

http://www.codeproject.com/csharp/solutionlcenotification.asp
http://www.codeproject.com/csharp/solutionlcenotification.asp
http://www.ietf.org/internet-drafts/draft-kivinen-mobike-protocol-00.txt
http://www.ietf.org/internet-drafts/draft-kivinen-mobike-protocol-00.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2960.txt
http://hipl.hiit.fi/hipl/hip-native-api-final.pdf
http://hipl.hiit.fi/hipl/hip-native-api-final.pdf
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://www.ee.technion.ac.il/~hugo/sigma.ps

BIBLIOGRAPHY

[LGS97] Alison Lee, Andreas Girgensohn, and Kevin Schlueter. Nynex
portholes: Initial user reactions and redesign implications. In
GROUP’97, International Conference on Supporting Group
Work, pages 385–394. ACM Press, 1997.

[LH03] Mikko Laukkanen and Heikki Helin. Web services in wireless
networks — what happened to the performance? In Liang-Jie
Zhang, editor, Proceedings of the International Conference
on Web Services, pages 278–284, June 2003.

[LHKR96] Mika Liljeberg, Heikki Helin, Markku Kojo, and Kimmo
Raatikainen. Mowgli WWW software: improved usability of
WWW in mobile WAN environments. In Proceedings of IEEE
Global Internet 1996, pages 33–37, November 1996.

[Li00] Sing Li. Professional Jini. Wrox Press, Birmingham, United
Kingdom, 2000.

[Lib03] Liberty Alliance Project. Introduction to the Liberty Alliance
Identity Architecture, version 1.0, March 2003. http:
//www.projectliberty.org/resources/whitepapers/LAP%
20Identity%20Architecture%20Whitepaper%20Final.pdf.

[Lin03] Tancred Lindholm. XML three-way merge as a reconciliation
engine for mobile data. In Third ACM International Workshop
on Data Engineering for Wireless and Mobile Access, pages
93–97, September 2003.

[LLS02] Yui-Wah Lee, Kwong-Sak Leung, and Mahadev Satya-
narayanan. Operation shipping for mobile file systems. IEEE
Transactions on Computers, 51(12):1410–1422, December
2002.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3):382–401, July 1982.

[LV95] David C. Luckham and James Vera. An event-based ar-
chitecture definition language. IEEE Transactions on Soft-
ware Engineering, 21(9):717–734, September 1995. http:
//citeseer.nj.nec.com/luckham95eventbased.html.

225

http://www.projectliberty.org/resources/whitepapers/LAP%20Identity%20Architecture%20Whitepaper%20Final.pdf
http://www.projectliberty.org/resources/whitepapers/LAP%20Identity%20Architecture%20Whitepaper%20Final.pdf
http://www.projectliberty.org/resources/whitepapers/LAP%20Identity%20Architecture%20Whitepaper%20Final.pdf
http://citeseer.nj.nec.com/luckham95eventbased.html
http://citeseer.nj.nec.com/luckham95eventbased.html

BIBLIOGRAPHY

[MC03] René Meier and Vinny Cahill. Exploiting proximity in
event-based middleware for collaborative mobile applica-
tions. In 4th International Conference on Distributed Applica-
tions and Interoperable Systems, pages 285–296, November
2003. http://www.springerlink.com/openurl.asp?genre=
article&issn=0302-9743&volume=2893&spage=285.

[McG02] Deborah L. McGuinness. Ontologies come of age. In Di-
eter Fensel, James Hendler, Henry Lieberman, and Wolfgang
Wahlster, editors, Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential. MIT Press, November
2002.

[Mei00] René Meier. State of the art review of distributed event mod-
els. Technical Report TCD-CS-2000-15, Department of Com-
puter Science, Trinity College, Dublin, Ireland, March 2000.
http://citeseer.nj.nec.com/437791.html.

[MES95] Lily Mummert, Maria Ebling, and Mahadev Satyanarayanan.
Exploiting weak connectivity for mobile file access. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating Sys-
tem Principles, pages 143–155, December 1995.

[Mic99a] Microsoft. Introduction to IntelliMirror Management Technolo-
gies, 1999. White paper.

[Mic99b] Microsoft. Message Queuing on Windows CE, June
1999. Windows CE Developers Conference, http://www.
microsoft.com/msmq/downloads/devcon99.ppt.

[Mic02] Microsoft. Message Queuing in Windows XP: New Fea-
tures, 2002. (White paper) http://www.microsoft.com/
msmq/MSMQ3.0_whitepaper_draft.doc.

[MKBL03] Christopher J. Matheus, Mieczyslaw M. Kokar, Kenneth Ba-
clawski, and Jerzy Letkowski. Constructing RuleML-based
domain theories on top of OWL ontologies. In Rules and Rule
Markup Languages for the Semantic Web, volume 2876 of
Lecture Notes in Computer Science, pages 81–94. Springer-
Verlag, Heidelberg, Germany, November 2003.

[MN03] Robert Moskowitz and Pekka Nikander. Host Identity Pay-
load Architecture. Internet Engineering Task Force, Septem-

226

http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2893&spage=285
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2893&spage=285
http://citeseer.nj.nec.com/437791.html
http://www.microsoft.com/msmq/downloads/devcon99.ppt
http://www.microsoft.com/msmq/downloads/devcon99.ppt
http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc
http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc

BIBLIOGRAPHY

ber 2003. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-moskowitz-hip-arch-05.txt.

[MNJH04a] Robert Moskowitz, Pekka Nikander, Petri Jokela, and
Thomas Henderson. Host Identity Protocol. Inter-
net Engineering Task Force, February 2004. [Inter-
net Draft] http://hip4inter.net/documentation/drafts/
draft-moskowitz-hip-09.txt.

[MNJH04b] Robert Moskowitz, Pekka Nikander, Petri Jokela, and
Thomas Henderson. Host Identity Protocol. Internet Engi-
neering Task Force, June 2004. [Internet Draft] http://www.
ietf.org/internet-drafts/draft-ietf-hip-base-00.txt.

[Mob01] Mobiliti. Overview of Intelligent Delta Selection Process
(iDESP), August 2001. http://www.mobiliti.com/PDF/
iDESPOverview30.pdf.

[Moc87] Paul Mockapetris. RFC 1034: Domain Names — Concepts
and Facilities. Internet Engineering Task Force, November
1987. http://www.ietf.org/rfc/rfc1034.txt.

[Mos01] Robert Moskowitz. Host Identity Payload Implementation.
Internet Engineering Task Force, February 2001. [Inter-
net Draft] http://homebase.htt-consult.com/~hip/draft-
moskowitz-hip-impl-01.txt.

[MS91] Henry Mashburn and Mahadev Satyanarayanan. RVM: Re-
coverable Virtual Memory User Manual, April 1991.

[NA04a] Pekka Nikander and Jari Arkko. End-Host Mobility and Multi-
Homing with Host Identity Protocol. Internet Engineering
Task Force, January 2004. [Internet Draft] http://www.ietf.
org/internet-drafts/draft-nikander-hip-mm-02.txt.

[NA04b] Pekka Nikander and Jari Arkko. Host Identity Indirec-
tion Infrastructure (Hi3). Internet Engineering Task Force,
June 2004. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-nikander-hiprg-hi3-00.txt.

[NH04] Pekka Nikander and Thomas Henderson. Considerations
on HIP based IPv6 multi-homing. Internet Engineering Task
Force, July 2004. [Internet Draft] http://www.ietf.org/
internet-drafts/draft-nikander-multi6-hip-01.txt.

227

http://www.ietf.org/internet-drafts/draft-moskowitz-hip-arch-05.txt
http://www.ietf.org/internet-drafts/draft-moskowitz-hip-arch-05.txt
http://hip4inter.net/documentation/drafts/draft-moskowitz-hip-09.txt
http://hip4inter.net/documentation/drafts/draft-moskowitz-hip-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-base-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-base-00.txt
http://www.mobiliti.com/PDF/iDESPOverview30.pdf
http://www.mobiliti.com/PDF/iDESPOverview30.pdf
http://www.ietf.org/rfc/rfc1034.txt
http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-impl-01.txt
http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-impl-01.txt
http://www.ietf.org/internet-drafts/draft-nikander-hip-mm-02.txt
http://www.ietf.org/internet-drafts/draft-nikander-hip-mm-02.txt
http://www.ietf.org/internet-drafts/draft-nikander-hiprg-hi3-00.txt
http://www.ietf.org/internet-drafts/draft-nikander-hiprg-hi3-00.txt
http://www.ietf.org/internet-drafts/draft-nikander-multi6-hip-01.txt
http://www.ietf.org/internet-drafts/draft-nikander-multi6-hip-01.txt

BIBLIOGRAPHY

[Nik02] Pekka Nikander. A case for host identity payload: An archi-
tecture for multihomed mobile hosts, February 2002. unpub-
lished manuscript.

[NIS94] National Institute of Standards and Technology. Digital Sig-
nature Standard (DSS), May 1994. http://www.itl.nist.
gov/fipspubs/fip186.htm.

[NL04] P. Nikander and J. Laganier. Host Identity Protocol (HIP)
Domain Name System (DNS) Extensions. IETF, May
2004. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-nikander-hip-dns-00.txt.

[Now89] Bill Nowicki. RFC 1094: NFS Network File System Protocol
Specification. Internet Engineering Task Force, March 1989.
http://www.ietf.org/rfc/rfc1094.txt.

[NYJW04] Pekka Nikander, Jukka Ylitalo, Petri Jokela, and Jorma
Wall. Integrating Security, Mobility, and Multihoming in a
HIP Way, February 2004. http://www.tml.hut.fi/~pnr/
publications/NDSS03-Nikander-et-al.pdf.

[OAS01] OASIS. RELAX NG Specification, December 2001. http:
//www.relaxng.org/spec-20011203.html.

[OAS02a] OASIS. UDDI Version 3.0, July 2002. http://uddi.org/
pubs/uddi-v3.00-published-20020719.htm.

[OAS02b] OASIS. Message Service Specification, Version 2.0, April
2002. http://www.oasis-open.org/committees/ebxml-
msg/documents/ebMS_v2_0.pdf.

[OAS04] OASIS. Web Services Security: SOAP Message Secu-
rity 1.0, March 2004. http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0.

[O’D03] Phelim O’Doherty. SIP and the Java platforms, June 2003.
http://java.sun.com/products/jain/SIP-and-Java.html.

[OMA03] Open Mobile Alliance. WV-041 Features and Functions, ver-
sion 1.2, February 2003.

[OMG01a] Object Management Group. CORBA Event Service Specifi-
cation v.1.1, March 2001.

228

http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.ietf.org/internet-drafts/draft-nikander-hip-dns-00.txt
http://www.ietf.org/internet-drafts/draft-nikander-hip-dns-00.txt
http://www.ietf.org/rfc/rfc1094.txt
http://www.tml.hut.fi/~pnr/publications/NDSS03-Nikander-et-al.pdf
http://www.tml.hut.fi/~pnr/publications/NDSS03-Nikander-et-al.pdf
http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/spec-20011203.html
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
http://java.sun.com/products/jain/SIP-and-Java.html

BIBLIOGRAPHY

[OMG01b] Object Management Group. CORBA Notification Service
Specification v.1.0, March 2001.

[OMG01c] Object Management Group. Management of Event Domains
Specification, June 2001. http://www.omg.org/cgi-bin/
doc?formal/2001-06-03.

[OMG02] Object Management Group. Joint Initial Submission regard-
ing the JMS Notification Service RFP, January 2002. http:
//www.omg.org/cgi-bin/doc?telecom/02-01-02.

[OR93] Jarkko Oikarinen and Darren Reed. RFC 1459: Internet
Relay Chat Protocol. Internet Engineering Task Force, May
1993. http://www.ietf.org/rfc/rfc1459.txt.

[OR02] Eamon O’Tuathail and Marshall T. Rose. RFC 3288: Using
the Simple Object Access Protocol (SOAP) in Blocks Exten-
sible Exchange Protocol (BEEP). Internet Engineering Task
Force, June 2002. http://www.ietf.org/rfc/rfc3288.txt.

[P+83] Douglas Stott Parker, Jr. et al. Detection of mutual inconsis-
tency in distributed systems. IEEE Transactions on Software
Engineering, 9(3):240–247, May 1983.

[Pab02] Chandandeep Pabla. SyncML intensive — a begin-
ner’s look at the SyncML protocol and procedures,
April 2002. http://www-106.ibm.com/developerworks/
wireless/library/i-syncml2/.

[Per96] Charles Perkins. RFC 2002: IP Mobility Support. Internet
Engineering Task Force, October 1996. http://www.ietf.
org/rfc/rfc2002.txt.

[Pla99] David Platt. The COM+ event service eases the pain of pub-
lishing and subscribing to data. Microsoft Systems Journal,
September 1999. http://www.microsoft.com/msj/0999/
comevent/comevent.aspx.

[Pos80] Jon Postel. RFC 768: User Datagram Protocol. Internet En-
gineering Task Force, August 1980. http://www.ietf.org/
rfc/rfc768.txt.

[Pos81] Jon Postel. RFC 793: Transmission Control Protocol. In-
ternet Engineering Task Force, September 1981. http:
//www.ietf.org/rfc/rfc793.txt.

229

http://www.omg.org/cgi-bin/doc?formal/2001-06-03
http://www.omg.org/cgi-bin/doc?formal/2001-06-03
http://www.omg.org/cgi-bin/doc?telecom/02-01-02
http://www.omg.org/cgi-bin/doc?telecom/02-01-02
http://www.ietf.org/rfc/rfc1459.txt
http://www.ietf.org/rfc/rfc3288.txt
http://www-106.ibm.com/developerworks/wireless/library/i-syncml2/
http://www-106.ibm.com/developerworks/wireless/library/i-syncml2/
http://www.ietf.org/rfc/rfc2002.txt
http://www.ietf.org/rfc/rfc2002.txt
http://www.microsoft.com/msj/0999/comevent/comevent.aspx
http://www.microsoft.com/msj/0999/comevent/comevent.aspx
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt

BIBLIOGRAPHY

[Pri01] Prism Technologies. Open Fusion Notification Service, May
2001. (White paper) http://www.prismtechnologies.com/
English/Products/CORBA/CORBA_services/notification/
whitepaper/01_Notification_may_01.html.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W.
Richa. Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of the ninth annual
ACM symposium on Parallel algorithms and architectures,
pages 311–320, June 1997.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A frame-
work for event composition in distributed systems. In Pro-
ceedings of the 4th International Conference on Middleware,
pages 62–82, June 2003. http://citeseer.nj.nec.com/
article/pietzuch03framework.html.

[PST+97] Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin
Theimer, and Alan J. Demers. Flexible update propagation
for weakly consistent replication. In Proceedings of the six-
teenth ACM Symposium on Operating Systems Principles,
pages 288–301, September 1997.

[PW03] Birgit Pfitzmann and Michael Waidner. Analysis of liberty
single-sign-on with enabled clients. IEEE Internet Comput-
ing Magazine, 7(6):38–44, November 2003.

[R+01a] Bill Ray et al. Professional Java Mobile Programming. Wrox
Press, Birmingham, United Kingdom, July 2001.

[R+01b] Sean Rhea et al. Maintenance-free global data storage. IEEE
Internet Computing, 5(5):40–49, September 2001.

[RC03] Anand Ranganathan and Roy H. Campbell. An infrastructure
for context-awareness based on first order logic. Personal
Ubiquitous Computing, 7(6):353–364, December 2003.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms, volume 2218 of Lecture
Notes in Computer Science, pages 329–350. Springer, Octo-
ber 2001.

230

http://www.prismtechnologies.com/English/Products/CORBA/CORBA_services/notification/whitepaper/01_Notification_may_01.html
http://www.prismtechnologies.com/English/Products/CORBA/CORBA_services/notification/whitepaper/01_Notification_may_01.html
http://www.prismtechnologies.com/English/Products/CORBA/CORBA_services/notification/whitepaper/01_Notification_may_01.html
http://citeseer.nj.nec.com/article/pietzuch03framework.html
http://citeseer.nj.nec.com/article/pietzuch03framework.html

BIBLIOGRAPHY

[REG+03] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weath-
erspoon, Ben Zhao, and John Kubiatowicz. Pond: the
OceanStore prototype. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, March 2003.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network.
Computer Communication Review, 31(4):161–172, October
2001.

[RGRK03] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubia-
towic. Handling churn in a DHT. Technical Report UCB//CSD-
03-1299, The University of California, Berkeley, December
2003. http://bamboo-dht.org/pubs.html.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, and Klara Nahrstedt. A
middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74–83, October 2002.

[Rii03a] Pekka Riikonen. Secure Internet Live Conferencing
(SILC) Protocol Specification, July 2003. [Internet
Draft] http://www.ietf.org/internet-drafts/draft-
riikonen-silc-spec-07.txt.

[Rii03b] Pekka Riikonen. SILC Message Flag Payloads, Decem-
ber 2003. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-riikonen-silc-flags-payloads-04.txt.

[Rii03c] Pekka Riikonen. User Online Presence and In-
formation Attributes, July 2003. [Internet Draft]
http://www.ietf.org/internet-drafts/draft-riikonen-
presence-attrs-02.txt.

[Rii04a] Pekka Riikonen. Secure Internet Live Conferencing
(SILC), Protocol Specification, February 2004. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
riikonen-silc-spec-08.txt.

[Rii04b] Pekka Riikonen. SILC Commands, February 2004. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
riikonen-silc-commands-06.txt.

231

http://bamboo-dht.org/pubs.html
http://www.ietf.org/internet-drafts/draft-riikonen-silc-spec-07.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-spec-07.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-flags-payloads-04.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-flags-payloads-04.txt
http://www.ietf.org/internet-drafts/draft-riikonen-presence-attrs-02.txt
http://www.ietf.org/internet-drafts/draft-riikonen-presence-attrs-02.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-spec-08.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-spec-08.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-commands-06.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-commands-06.txt

BIBLIOGRAPHY

[Rii04c] Pekka Riikonen. SILC Key Exchange and Au-
thentication Protocols, February 2004. [Internet
Draft] http://www.ietf.org/internet-drafts/draft-
riikonen-silc-ke-auth-08.txt.

[Rii04d] Pekka Riikonen. SILC Packet Protocol, February 2004. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
riikonen-silc-pp-08.txt.

[RMCM03] Anand Ranganathan, Robert E. McGrath, Roy H. Campbell,
and M. Dennis Mickunas. Ontologies in a pervasive comput-
ing environment. In Workshop on Ontologies and Distributed
Systems (part of the 18’th International Joint Conference on
Artificial Intelligence), August 2003.

[Roa02] Adam Roach. RFC 3265: Session Initiation Protocol (SIP)-
specific Event Notification. Internet Engineering Task Force,
June 2002. http://www.ietf.org/rfc/rfc3265.txt.

[Ros01a] Marshall T. Rose. RFC 3080: The Blocks Extensible Ex-
change Protocol Core. Internet Engineering Task Force,
March 2001. http://www.ietf.org/rfc/rfc3080.txt.

[Ros01b] David Rosenblum. A tour of Siena, an interoper-
ability infrastructure for internet-scale distributed architec-
tures. In Ground System Architectures Workshop, February
2001. http://sunset.usc.edu/GSAW/gsaw2001/SESSION3/
Siena.pdf.

[Ros04] Jonathan Rosenberg. A Presence Event Package for the
Session Initiation Protocol (SIP). Internet Engineering Task
Force, August 2004. http://www.ietf.org/rfc/rfc3856.
txt.

[RSC+02] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camar-
illo, Alan Johnston, Jon Peterson, Robert Sparks, Mark Han-
dley, and Eve Schooler. RFC 3261: SIP: Session Initia-
tion Protocol. Internet Engineering Task Force, June 2002.
http://www.ietf.org/rfc/rfc3261.txt.

[S+90] Mahadev Satyanaraynan et al. Coda: A highly available
file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

232

http://www.ietf.org/internet-drafts/draft-riikonen-silc-ke-auth-08.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-ke-auth-08.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-pp-08.txt
http://www.ietf.org/internet-drafts/draft-riikonen-silc-pp-08.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3080.txt
http://sunset.usc.edu/GSAW/gsaw2001/SESSION3/Siena.pdf
http://sunset.usc.edu/GSAW/gsaw2001/SESSION3/Siena.pdf
http://www.ietf.org/rfc/rfc3856.txt
http://www.ietf.org/rfc/rfc3856.txt
http://www.ietf.org/rfc/rfc3261.txt

BIBLIOGRAPHY

[S+97] Mike J. Spreitzer et al. Dealing with server corruption in
weakly consistent, replicated data systems. In Proceedings
of the Third Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 234–240, Septem-
ber 1997.

[S+01] Tony Speakman et al. RFC 3208: PGM Reliable Transport
Protocol Specification. Internet Engineering Task Force, De-
cember 2001. http://www.ietf.org/rfc/rfc3208.txt.

[SA04a] Peter Saint-Andre. End-to-End Signing and Object Encryp-
tion in the Extensible Messaging and Presence Protocol
(XMPP). Internet Engineering Task Force, July 2004. [Inter-
net Draft] http://www.ietf.org/internet-drafts/draft-
ietf-xmpp-e2e-09.txt.

[SA04b] Peter Saint-Andre. Extensible Messaging and Presence
Protocol (XMPP): Core. Internet Engineering Task Force,
May 2004. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-ietf-xmpp-core-24.txt.

[SA04c] Peter Saint-Andre. Extensible Messaging and Presence Pro-
tocol (XMPP): Instant Messaging. Internet Engineering Task
Force, April 2004. [Internet Draft] http://www.ietf.org/
internet-drafts/draft-ietf-xmpp-im-22.txt.

[SA04d] Peter Saint-Andre. Mapping the Extensible Messaging and
Presence Protocol (XMPP) to Common Presence and In-
stant Messaging (CPIM). Internet Engineering Task Force,
May 2004. [Internet Draft] http://www.ietf.org/internet-
drafts/draft-ietf-xmpp-cpim-05.txt.

[SAS01] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting dis-
connectedness — transparent information delivery for mobile
and invisible computing. In Proceedings of the 1st Interna-
tional Symposium on Cluster Computing and the Grid, page
277, May 2001.

[Sat96] Mahadev Satyanarayanan. Mobile information access. IEEE
Personal Communications, 3(1):26–33, February 1996.

[Sau02] Christopher Saunders. A lack of SIMPLE pleasures,
November 2002. http://www.instantmessagingplanet.
com/enterprise/article.php/10816_1498911.

233

http://www.ietf.org/rfc/rfc3208.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-e2e-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-e2e-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-core-24.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-core-24.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-im-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-im-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-cpim-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-cpim-05.txt
http://www.instantmessagingplanet.com/enterprise/article.php/10816_1498911
http://www.instantmessagingplanet.com/enterprise/article.php/10816_1498911

BIBLIOGRAPHY

[SAZ+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker,
and Sonesh Surana. Internet indirection infrastructure. In
ACM SIGCOMM 2002, aug 2002. http://i3.cs.berkeley.
edu/publications/papers/i3-sigcomm.pdf.

[SB00] Jürgen Schirmer and Holger Bach. Context management in
an agent-based approach for service assistance in the do-
main of consumer electronics. In Proceedings of the 2000
Conference on Intelligent Interactive Assistance and Mobile
Multimedia Computing, November 2000.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The
context toolkit: Aiding the development of context-enabled
applications. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 434–441, May
1999.

[SGGB02] Aleksander Slominski, Madhusudhan Govindaraju, Dennis
Gannon, and Randall Bramley. An extensible and interop-
erable event system architecture using SOAP. Technical Re-
port TR549, Department of Computer Science, Indiana Uni-
versity, February 2002. http://www.extreme.indiana.edu/
xgws/papers/events_paper/.

[Sie99] Jon Siegel. An overview of CORBA 3. In Proceedings of
the Second International Working Conference on Distributed
Applications and Interoperable Systems, July 1999.

[Sin01] Henry Sinnreich. Internet Communications Using SIP: De-
livering VoIP and Multimedia Services with Session Initiation
Protocol. Wiley, Hoboken, New Jersey, November 2001.

[SK92] Mahadev Satyanarayanan and James Kistler. Disconnected
operation in the Coda file system. ACM Transactions on Com-
puter Systems, 10(1):3–25, February 1992.

[SLPF03] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian
Frank. Cool: A context ontology language to enable con-
textual interoperability. In Jean-Bernard Stefani, Isabelle
Dameure, and Daniel Hagimont, editors, Proceedings of the
4th IFIP WG 6.1 International Conference on Distributed Ap-
plications and Interoperable Systems, volume 2893 of Lec-
ture Notes in Computer Science, pages 236–247. Springer-
Verlag, November 2003.

234

http://i3.cs.berkeley.edu/publications/papers/i3-sigcomm.pdf
http://i3.cs.berkeley.edu/publications/papers/i3-sigcomm.pdf
http://www.extreme.indiana.edu/xgws/papers/events_paper/
http://www.extreme.indiana.edu/xgws/papers/events_paper/

BIBLIOGRAPHY

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. Computer Communi-
cation Review, 31(4):149–160, October 2001.

[SPGK+03] Paul Sandoz, Santiago Pericas-Geertsen, Kohuske
Kawaguchi, Marc Hadley, and Eduardo Pelegri-Llopart.
Fast Web services, August 2003. http://developer.java.
sun.com/developer/technicalArticles/WebServices/
fastWS/index.html.

[SQ04] M. Stiemerling and J. Quittek. Problem Statement: HIP oper-
ation over Network Address Translators. Internet Engineering
Task Force, February 2004. [Expired Internet Draft].

[Sri01] Paddy Srinivas. Introduction to COM+ events, March 2001.
http://www.idevresource.com/com/library/articles/
com+eventsintro.asp.

[SRL96] Kevin Savetz, Neil Randall, and Yves Lepage. MBONE:
Multicasting Tomorrow’s Internet, April 1996. http://www.
savetz.com/mbone/.

[SS02] Yasushi Saito and Marc Shapiro. Replication: Optimistic ap-
proaches. Technical Report HPL-2002-33, Hewlett Packard
Laboratories, February 2002. http://www.hpl.hp.com/
techreports/2002/HPL-2002-33.pdf.

[Sun01] Sun Microsystems, Santa Clara, California, USA. Java Mes-
sage Service Specification, June 2001.

[Sun04] Sun Microsystems, Santa Clara, California, USA.
JSR 172: J2ME Web Services Specification, March
2004. http://jcp.org/aboutJava/communityprocess/
final/jsr172/index.html.

[SW00] Henning Schulzrinne and Elin Wedlund. Application-layer
mobility using SIP. ACM SIGMobile, 4(3):47–57, July 2000.
http://doi.acm.org/10.1145/372346.372369.

[Syn01] SyncML Initiative. The Business Case for Device Manage-
ment, November 2001. (White paper) http://www.syncml.
org/syncml_devman_business_cases_whppr.pdf.

235

http://developer.java.sun.com/
http://developer.java.sun.com/
developer/technicalArticles/WebServices/fastWS/index.html
developer/technicalArticles/WebServices/fastWS/index.html
http://www.idevresource.com/com/library/articles/com+eventsintro.asp
http://www.idevresource.com/com/library/articles/com+eventsintro.asp
http://www.savetz.com/mbone/
http://www.savetz.com/mbone/
http://www.hpl.hp.com/techreports/2002/HPL-2002-33.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-33.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr172/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr172/index.html
http://doi.acm.org/10.1145/372346.372369
http://www.syncml.org/syncml_devman_business_cases_whppr.pdf
http://www.syncml.org/syncml_devman_business_cases_whppr.pdf

BIBLIOGRAPHY

[Syn02a] SyncML Initiative. SyncML Representation Protocol, ver-
sion 1.1, February 2002. http://www.syncml.org/docs/
syncml_represent_v11_20020215.pdf.

[Syn02b] SyncML Initiative. SyncML Sync Protocol, version 1.1, Febru-
ary 2002. http://www.syncml.org/docs/syncml_sync_
protocol_v11_20020215.pdf.

[Taz03] Mohammad-Reza Tazari. A context-oriented RDF database.
In Proceedings of the first International Workshop on Seman-
tic Web and Databases, pages 63–78, September 2003.

[TCH00] Telecordia Technologies Inc, Columbia University, Hughes
Software Systems. SIP Extensions for Communicating
with Networked Appliances, November 2000. http://www.
hssworld.com/hss_mindsystem/ietf/sip_extn.htm.

[TD+94] Douglas B. Terry, Alan J. Demers, , Karin Petersen, Mike
Spreitzer, Marvin Theimer, and Brent W. Welch. Session
guarantees for weakly-consistent replicated data. In Pro-
ceedings of the 3rd International Conference on Parallel and
Distributed Information Systems, pages 140–149, September
1994.

[TGF03] Mohammad-Reza Tazari, Matthias Grimm, and Matthias
Finke. Modeling user context. In The 10th International Con-
ference on Human-Computer Interaction (HCII), June 2003.

[Tri99] Andrew Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National University, Can-
berra, Australia, February 1999.

[TRTN03] Graham Thomson, Matthew Richmond, Sotirios Terzis, and
Paddy Nixon. An approach to dynamic context discovery and
composition. In Proceedings of Ubisys: System Support for
Ubiquitous Computing Workshop, October 2003.

[vH02] Bill von Hagen. Using the InterMezzo Distributed Filesys-
tem — Getting Connected in a Disconnected World, Au-
gust 2002. http://www.linuxplanet.com/linuxplanet/
reports/4368/1.

236

http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
http://www.hssworld.com/hss_mindsystem/ietf/sip_extn.htm
http://www.hssworld.com/hss_mindsystem/ietf/sip_extn.htm
http://www.linuxplanet.com/linuxplanet/reports/4368/1
http://www.linuxplanet.com/linuxplanet/reports/4368/1

BIBLIOGRAPHY

[W3C99a] World Wide Web Consortium. HTML 4.01 Specification, De-
cember 1999. [Recommendation] http://www.w3.org/TR/
html401/.

[W3C99b] World Wide Web Consortium. WAP Binary XML Content For-
mat, June 1999. [Note] http://www.w3.org/TR/wbxml/.

[W3C99c] World Wide Web Consortium. Resource Description Frame-
work (RDF) Model and Syntax Specification, February
1999. [Recommendation] http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/.

[W3C99d] World Wide Web Consortium. XML Path Language
(XPath) 1.0, November 1999. [Recommendation] http://
www.w3.org/TR/xpath.

[W3C00a] World Wide Web Consortium. Document Object Model
(DOM) Level 2 Events Specification, Version 1.0, Novem-
ber 2000. [Recommendation] http://www.w3.org/TR/DOM-
Level-2-Events/.

[W3C00b] World Wide Web Consortium. Simple Object Access Proto-
col (SOAP) 1.1, May 2000. [Note] http://www.w3.org/TR/
SOAP/.

[W3C01a] World Wide Web Consortium. XML Schema Part 1: Struc-
tures, May 2001. [Recommendation] http://www.w3.org/
TR/xmlschema-1/.

[W3C01b] World Wide Web Consortium. XML Schema Part 2:
Datatypes, May 2001. [Recommendation] http://www.w3.
org/TR/xmlschema-2/.

[W3C01c] World Wide Web Consortium. Web Services Description Lan-
guage (WSDL) 1.1, March 2001. [Note] http://www.w3.org/
TR/wsdl.

[W3C02a] World Wide Web Consortium. SOAP Version 1.2 Email Bind-
ing, June 2002. [Note] http://www.w3.org/TR/2002/NOTE-
soap12-email-20020626.

[W3C02b] World Wide Web Consortium. SOAP Version 1.2 Usage Sce-
narios, June 2002. [Working Draft] http://www.w3.org/TR/
2002/WD-xmlp-scenarios-20020626/.

237

http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/wbxml/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2002/NOTE-soap12-email-20020626
http://www.w3.org/TR/2002/NOTE-soap12-email-20020626
http://www.w3.org/TR/2002/WD-xmlp-scenarios-20020626/
http://www.w3.org/TR/2002/WD-xmlp-scenarios-20020626/

BIBLIOGRAPHY

[W3C02c] World Wide Web Consortium. XML Encryption Syntax
and Processing, December 2002. http://www.w3.org/TR/
xmlenc-core/.

[W3C02d] World Wide Web Consortium. XML Signature Syntax
and Processing, February 2002. http://www.w3.org/TR/
xmldsig-core/.

[W3C03a] World Wide Web Consortium. OWL Web Ontology Language
Guide, December 2003. [Proposed Recommendation] http:
//www.w3.org/TR/owl-guide/.

[W3C03b] World Wide Web Consortium. OWL Web Ontology Language
Overview, December 2003. [Proposed Recommendation]
http://www.w3c.org/TR/owl-features/.

[W3C03c] World Wide Web Consortium. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax, December 2003.
[Proposed Recommendation] http://www.w3c.org/TR/owl-
semantics/.

[W3C03d] World Wide Web Consortium. SOAP Version 1.2 Part 1:
Messaging Framework, June 2003. [Recommendation] http:
//www.w3.org/TR/soap12-part1/.

[W3C03e] World Wide Web Consortium. SOAP Version 1.2 Part 2: Ad-
juncts, June 2003. [Recommendation] http://www.w3.org/
TR/soap12-part2/.

[W3C03f] World Wide Web Consortium. SOAP Version 1.2 Speci-
fication Assertions and Test Collection, June 2003. [Rec-
ommendation] http://www.w3.org/TR/2003/REC-soap12-
testcollection-20030624/.

[W3C03g] World Wide Web Consortium. XML Events — An Events Syn-
tax for XML, February 2003. [Candidate Recommendation]
http://www.w3.org/TR/2003/CR-xml-events-20030207.

[W3C04a] World Wide Web Consortium. Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language, Au-
gust 2004. [Last Call Working Draft] http://www.w3.org/TR/
2004/WD-wsdl20-20040803.

238

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3c.org/TR/owl-features/
http://www.w3c.org/TR/owl-semantics/
http://www.w3c.org/TR/owl-semantics/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/2003/REC-soap12-testcollection-20030624/
http://www.w3.org/TR/2003/REC-soap12-testcollection-20030624/
http://www.w3.org/TR/2003/CR-xml-events-20030207
http://www.w3.org/TR/2004/WD-wsdl20-20040803
http://www.w3.org/TR/2004/WD-wsdl20-20040803

BIBLIOGRAPHY

[W3C04b] World Wide Web Consortium. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 2: Predefined Extensions,
August 2004. [Last Call Working Draft] http://www.w3.org/
TR/2004/WD-wsdl20-extensions-20040803.

[W3C04c] World Wide Web Consortium. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 3: Bindings, August 2004.
[Last Call Working Draft] http://www.w3.org/TR/2004/WD-
wsdl20-bindings-20040803.

[W3C04d] World Wide Web Consortium. XML Binary Characterization
Use Cases, July 2004. [Working Draft] http://www.w3.org/
TR/2004/WD-xbc-use-cases-20040728/.

[W3C04e] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0, 3rd edition, February 2004. [Recommendation]
http://www.w3.org/TR/2004/REC-xml-20040204/.

[W3C04f] World Wide Web Consortium. Extensible Markup Language
(XML) 1.1, February 2004. [Recommendation] http://www.
w3.org/TR/2004/REC-xml11-20040204/.

[W3C04g] World Wide Web Consortium. SOAP Message Transmission
Optimization Mechanism, August 2004. [Candidate Recom-
mendation] http://www.w3.org/TR/2004/CR-soap12-mtom-
20040826/.

[W3C04h] World Wide Web Consortium. Web Services Architecture,
February 2004. [Note] http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/.

[W3C04i] World Wide Web Consortium. Web Services Glossary,
February 2004. [Note] http://www.w3.org/TR/2004/NOTE-
ws-gloss-20040211/.

[W3C04j] World Wide Web Consortium. XML-binary Optimized Pack-
aging, August 2004. [Candidate Recommendation] http:
//www.w3.org/TR/2004/CR-xop10-20040826/.

[W3C04k] World Wide Web Consortium. XML Information Set, 2nd
edition, February 2004. [Recommendation] http://www.w3.
org/TR/2004/REC-xml-infoset-20040204/.

239

http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803
http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803
http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803
http://www.w3.org/TR/2004/WD-xbc-use-cases-20040728/
http://www.w3.org/TR/2004/WD-xbc-use-cases-20040728/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/CR-soap12-mtom-20040826/
http://www.w3.org/TR/2004/CR-soap12-mtom-20040826/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/CR-xop10-20040826/
http://www.w3.org/TR/2004/CR-xop10-20040826/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

BIBLIOGRAPHY

[Wel00] Brian Wellington. RFC 3007: Secure Domain Name System
(DNS) Dynamic Update. Internet Engineering Task Force,
November 2000. http://www.ietf.org/rfc/rfc3007.txt.

[WGZP04] Xiaohang Wang, Tao Gu, Daqing Zhang, and Hung Keng
Pung. Ontology based context modeling and reasoning us-
ing owl. In Workshop on Context Modeling and Reasoning at
IEEE International Conference on Pervasive Computing and
Communication, March 2004.

[WHFG92] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gib-
bons. The active badge location system. ACM Transactions
on Information Systems, 10(1):91–102, January 1992.

[Win99] Dave Winer. XML-RPC Specification, October 1999. http:
//www.xmlrpc.com/spec.

[Woo01] David Woodhouse. JFFS: The journaling flash file system.
Presented at the Ottawa Linux Symposium, October 2001.
http://sources.redhat.com/jffs2-html/.

[WV02a] The Wireless Village initiative. Wireless Village Specification,
version 1.0, March 2002.

[WV02b] The Wireless Village initiative. Wireless Village Specification,
version 1.1, July 2002.

[YJWN02] Jukka Ylitalo, Petri Jokela, Jorma Wall, and Pekka Nikander.
End-point identifiers in Secure Multihomed Mobility, Decem-
ber 2002. http://www.hut.fi/~jylitalo/publications/
Opodis02-Ylitalo-et-al.pdf.

[ZFD+03] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan.
Using semantic web technology in multi-agent systems: a
case study in the TAGA trading agent environment. In Pro-
ceedings of the 5th international conference on Electronic
commerce, pages 95–101, September 2003.

[ZKJ01] Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and rout-
ing. Technical Report CSD-01-1141, Computer Science Divi-
sion, University of California, Berkeley, California, April 2001.

240

http://www.ietf.org/rfc/rfc3007.txt
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://sources.redhat.com/jffs2-html/
http://www.hut.fi/~jylitalo/publications/Opodis02-Ylitalo-et-al.pdf
http://www.hut.fi/~jylitalo/publications/Opodis02-Ylitalo-et-al.pdf

	Introduction
	Event-based Systems
	Introduction
	Event Models
	Events
	Event Model
	Routing
	Content-based Routing
	Requirements for Mobile Computing

	Event Standards and Specifications
	Java Delegation Event Model
	Java Distributed Event Model
	Java Message Service
	CORBA Event Service
	CORBA Notification Service
	CORBA Management of Event Domains
	W3C DOM Events
	Web Services Eventing (WS-Eventing)
	COM+ and .NET
	Websphere MQ

	Event Systems
	The Cambridge Event Architecture
	Scalable Internet Event Notification Architecture
	Scribe
	Elvin
	JEDI
	ECho
	JECho
	Rebeca
	Gryphon
	STEAM
	Rapide

	Conclusions

	XML Protocols
	XML
	Web Services
	Protocols
	History
	Features
	Current State
	Implementations

	XML over Wireless
	Problem Areas
	Transfer Protocols
	Compression

	Conclusions

	Synchronization
	Introduction
	Coda
	Storage and Update Model
	Coda as an MDIB
	Practical Issues

	InterMezzo
	Storage and Update Model
	InterMezzo as an MDIB
	Practical Issues

	Bayou
	Storage and Update Model
	Bayou as an MDIB: Practical Issues

	Key-based Routing
	Plaxton-Rajaman-Richa KBR

	OceanStore
	Storage and Update Model
	OceanStore as an MDIB
	Practical Issues

	SyncML
	Using SyncML in an MDIB
	Deployment Issues

	Synchronization Policies
	Generic Data Reconciliation Methods
	Strategies for Conserving Bandwidth
	Data Compression
	Delta Transfers
	Content Adaptation
	Operation Shipping

	Conclusions

	Mobile Presence
	Introduction
	Concepts
	Presence and Context
	History
	Challenges

	Existing Presence Technology
	Open Mobile Alliance
	The Parlay Group
	Internet Engineering Task Force
	Service Integrators

	Discussion
	Prototypes
	Fundamental Trade-offs
	Online Identity
	Embedded Presence
	Related Research

	Conclusions

	Host Identity Protocol
	Introduction
	Background
	Architecture Overview
	Host Identity
	Other Representations of Host Identity in HIP
	Base Exchange
	Security and Privacy
	Multihoming
	Mobility
	Rendezvous Server
	Native Application Programming Interface
	Advantages and Disadvantages

	Related Work
	Mobile IPv6
	MobIKE
	SCTP

	Current Status
	Standardization Status
	HIP Projects
	Meetings

	Conclusions

	SIP and Events
	Introduction
	Overview of SIP
	Session Initiation Protocol (SIP)
	Terminologies in SIP
	Steps Involved in Establishing a Session
	Methods and Response in a SIP Transaction
	Features of SIP

	SIP Research Areas
	Active Research Topics
	Working Groups in IETF
	Work in the Third Generation Partnership Project on SIP

	SIP and Event Architectures
	An Introduction to Events in Distributed Systems
	General Requirements of an Event Framework
	Design Patterns for Event Architectures
	SIP Event Notification
	CORBA Notification Service
	JINI Event Architecture
	GRID SOAP Event Systems
	Comparison between SIP, CORBA, GRID SOAP, and JINI Events

	SIP and Java
	JSIP --- A Prototype Implementation of SIP Extensions
	SIP and JAIN
	SIP for J2ME
	SIP Servlets
	Interworking of Various Java APIs with SIP
	Open Source SIP Implementations

	Related Work
	Medical Event-based Monitoring System
	Application of SIP to Ubiquitous Computing
	SIP for Emergency Systems
	SIP Extensions for Communicating with Networked Appliances

	Summary

	Context Modeling
	Introduction
	Requirements for Context Representation
	Classification of Context Information
	Ontologies
	CC/PP
	Device Independence Working Group
	RDF
	OWL Web Ontology Language

	Formal Approaches to Context Representation
	Comprehensive Structured Context Profiles (CSCP)
	Model for Mobile User Context
	ASC-Model and Context Ontology Language (CoOL)
	Context Modeling via Dynamic Context Discovery
	GAIA
	Context Broker Architecture (CoBrA)
	SOCAM and CONON

	Discussion

