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Abstract

We study the application of independent component analysis to discovery of a causal
ordering between observed variables. Path analysis is a widely-used method for
causal analysis. It is of confirmatory nature and can provide statistical tests for
assumed causal relations based on comparison of the implied covariance matrix with
a sample covariance. However, it is based on the assumption of normality and only
uses the covariance structure, which is why it has several problems, for example, one
cannot find the causal direction between two variables if only those two variables
are observed because the two models to be compared are equivalent to each other.
In previous work, we showed that use of nonnormality of observed variables can
find the possible causal direction between two variables. In this article, we extend
the method to more than two variables and develop a new statistical method for
discovery of a causal ordering using nonnormality of observed variables.
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1 Introduction

An effective way to examine causality is to conduct an experiment with ran-
dom assignment (Holland, 1986; Rubin, 1974). However, there are many situa-
tions that pose some difficulties to conduct experiments: One of the difficulties
is that the direction of causality is often unknown. It is necessary to develop
useful methods for finding a good inital model of causal orders between ob-
served variables from nonexperimental data.

Path analysis was originated by the biologist S. Wright in 1920’s and has
been often applied to analyze causal relations of nonexperimental data in an
empirical way. The path analysis is an extension of regression analysis where
many endogenous and exogenous variables can be analyzed simultaneously.
In 1970’s, the path analysis was incorporated with factor analysis and latent
variables were allowed in the model. The new framework is now called struc-
tural equation modeling (e.g., Bollen, 1989) and is a powerful tool of causal
analysis.

However, the structural equation modeling (SEM) is of confirmatory nature
and researchers have to model the true causal relationships based on back-
ground knowledge before collecting or analyzing data (e.g., Goldberger, 1972).
It is difficult to model true causal relations in many cases, especially at the be-
ginning of research. Lack of background knowledge often has the consequence
that the causal direction is unknown.

Furthermore, SEM has some problems due to its restriction to normal distri-
bution, for example: One cannot find the possible causal direction between
two variables if only those two variables are observed because the two models
with different direction are equivalent to each other.

A very simple illustration of the problem of finding the direction of causality
is given by two regression models, called Model 1 and Model 2 here:

Model 1: 21 =bioxs + & (1)
Model 2: 29 =boia1 + &, (2)

where the explanatory variable is assumed to be uncorrelated with the dis-
turbance & or &. We cannot say anything about which model is better from
the two conventional regression analyses based on the two models above in
the framework of SEM. Using the SEM terminology, the both models are
saturated on the covariance matrix of [x1, o).

Kano and Shimizu (2003); Shimizu and Kano (2003b) showed that use of
nonnormality of observed variables makes it possible to distinguish between



Model 1 and Model 2. In this paper, we shall extend their method to more than
two variables and propose an algorithm to explore a causal ordering between
observed variables from nonexperimental data.

2 Brief review of independent component analysis

Independent component analysis (ICA) is one of multivariate analysis tech-
niques which aims at separating or recovering linearly-mixed unobserved mul-
tidimensional independent signals from the mixed observable variables. See
e.g., Hyvérinen, Karhunen and Oja (2001), for a thorough description of ICA.

Let 2 be an observed m-vector. The ICA model for x is written as

x = As, (3)

where A is called a mixing matrix and s is an n-vector of unobserved variables
or blind signals with zero mean and unit variance. Typically, the number of
observed variables m is assumed to that of latent variables n. The main process
of ICA is to estimate the mixing matrix.

Comon (1994) provided conditions for the model to be estimable for the typical
case where m < n. The conditions include that the components of s are
mutually independent and contain at most one normal component. ICA solves
the estimation problem by maximizing independency among the components
of s. The independency is very often measured by nonnormality (see e.g.,
Hyvéarinen and Kano, 2003). That is, the estimation is implemented by finding
the demixing matrix W such that the components of s = Wa have maximal
nonnormality. A classical measure of nonnormality is kurtosis, defined as

kurt(u) = E(u?) — 3{E(u?®)}>. (4)

The kurtosis is zero for a normal variable and non-zero for most nonnormal
variables. Comon (1994) proposed an estimation algorithm to maximize the
sum of squared kurtosis of s, that is,

W = arg max > kurt(3;)® = arg max > kurt(w] ), (5)
i=1 i=1

where w! denotes the i-th row of . Here, the data is assumed to be sphered
(whitened) (e.g., Hyvérinen, Karhunen and Oja, 2001) and W is constrained
to be orthogonal.



Although the idea of ICA using kurtosis is simple, it can be very sensitive to
outliers. Hyvérinen (1999) suggested a class of nonnormality measures

J(u) o [E(G(u) — E(G))], (6)

where G(-) is a nonlinear and nonquadratic function and v follows the normal
distribution with zero mean and unit variance. More robust estimators are
provided if the choice of G that does not grow too fast is made. For example,
one can take G(u) = log cosh(u). He further proposed a very efficient algorithm
to estimate W maximizing (6), called FastICA (Hyvérinen, 1999; Hyvéarinen
and Oja, 1997).

In ICA as well as the traditional multivariate methods including factor anal-
ysis, the following ambiguities hold: i) one cannot determine the sign of s;.
one can multiply the independent component by —1 with giving no affect to
the model in (3); ii) one cannot determine the order of the independent com-
ponents. A permutation matrix P and its inverse can be substituted in the
model to provide & = AP~!Ps. The element of Ps are the original s;, but in
another order.

3 Finding a causal order between two variables

In this section, we shall explain how we can find a causal order between two
variables using nonnormality.

3.1 Definition of a causal order

What is causality? Many philosophers and statisticians have tried to answer
the quite difficult question and proposed various frameworks to find causal
relations for a long time (Bollen, 1989; Bullock, Harlow and Mulaik, 1994;
Granger, 1969; Holland, 1986; Hume, 1740; Mill, 1843; Mulaik and James,
1995; Pearl, 2000; Rubin, 1974; Suppes, 1970).

In this article, we say that causality (a causal order) from a random variable

1 to a random variable xo, which we denote by x; — x9, is confirmed if an
equation:

Ty = f(11,&2) (7)

holds where & is a disturbance variable which is independently distributed



from the explanatory variable z1.3 The & is a function of many variables
21, 22, "+, Zq that have small and not very important influences on x, or that
may not be noticed by researcher, as well as an error variable es. That is,
& = (21,22, -+, 24, €2) (e.g., Bollen, 1989).

For simplicity, let us assume that f(z1,&) = bax1 + &, is a simple linear
function of x; and &. Then we obtain a simple regression analysis model:

To = boy1 + &2, (8)

where x; and & are independent from each other. Now we can reformulate
the causal order of z; to xa: a nonzero constant by exists so that (8) holds.
Note that independence between an explanatory variable x; and a disturbance
variable &, not only their uncorrelatedness, is assumed here. 4

The two concepts, independence and uncorrelatedness are very different. The
independence between s; and ss is equivalent to

Elhi(s1)ha(s2)] — E[hi(s1)]E[ha(s2)] = 0. (9)

for any two functions h; and hs. Uncorrelatedness is a much weaker condition
than independence. Two random variables s; and s, are said to be uncorrelated
if their covariance is zero,

E(Slsg) — E(Sl)E(Sg) =0. (10)

If those two variables are independent, they are uncorrelated, which follows di-
rectly from (9) taking hi(s1) = s1 and ha(s2) = so. However, uncorrelatedness
does not mean independence (see, e.g., Hyvarinen and Oja, 2000).

A dependency between x; and & would imply the existence of one (or more)
unobserved confounding variables between z; and x5 (Bollen, 1989; Kano and
Shimizu, 2003). It is known that regression-based causal analysis may be com-
pletely distorted if there are unobserved confounding variables. If x; and &

3 Rigorously speaking, we need to examine if equation (7) holds for each unit in a
population U to confirm causation from x; to 22 in U because we have to distinguish
between interpersonal change (causation) and individual difference (association)
(see, e.g., Holland, 1986, for causation and association). However, it is rarely possible
to examine it from nonexperimental data since the data is usually one-time-point
data. In this article, we assume that interpersonal change can be approximated by
individual difference in our data sets, which is usually assumed in causal analysis
based on nonexperimental data.

4 The condition is related to pseudo-isolation in Bollen (1989). However, he required
only uncorrelatedness, not independence.



are independent, it implies that no unobserved confounding variable exists
(Kano and Shimizu, 2003). However, if they are merely uncorrelated, it does
not ensure anything about the existence of confounding variables. Let z be an
unobserved confounding variable, and let us assume that

To=bo1x1 + Y232 + &2 (11)
T = ’)/1324-51. (12)

We then have

Cov(z1, ) = boy Var(z1) + 2313 Var(z). (13)

Depending on the particular values of 7,3 and 713, there could be nonzero
covariance between x; and x5 even if by;=0, and one could make an interpre-
tation that a causal order from x5 to 1 or its opposite exists; on the other
hand, there could be zero covariance between x; and xs even if by is large
enough. Thus, independence and nonnormality are key assumptions in our
settings.

3.2 Finding a causal order between two variables

Let 1 and x9; (j =1,..., N) be observations on random variables z; and x,
with zero mean. Denote 2?7 = + Z;V:l w7 (i =1,2) and T177 = & Z;V:l T1;T9;.
We shall use similar notation in subsequent derivations without explicit defi-
nitions.

The second-order moment structure of Model 1 is obviously given as

vt boE(wd) + B(E)
El|lzmm| = bioE(x3) which we denote by E[ms] = o3(712),
3 E(x3)

where 79 = [E(23), E(&2), biz)”. The number of sample moments to be used
and the number of parameters are both three and thus, the Models 1 and
2 are saturated and equivalent to each other as far as covariances alone are
concerned. Both models receive a perfect fit to the sample covariance matrix.

Shimizu and Kano (2003b) assumed that [z1, 2] is nonnormally distributed
and utilized higher-order moments to distinguish between Model 1 and Model
2. They further assumed that explanatory and disturbance variables, zo and
&1, r1 and &, are independently distributed.



Consider using fourth-order moments. The expectations of the fourth-order
moments can be expressed in a similar manner as

| 6B + 60, EEEE) + B(E)
riws b, E(x3) + 3bi2 E(23) E(£7)
E | 233 | = b1, E(r3) + E(23)E(&7)
123 biaE(z3)
il B(a})

which we denote k;y Elmy] = o4(T4)
for Model 1, where 7, = [71, E(x3), E(&)]T.

In Model 1, we have three second-order moments and five fourth-order mo-
ments, whereas there are five parameters. The number of parameters is smaller
than the number of moments used. Thus, if we define a measure of model fit by
a weighted distance between the observed moments and the moments implied
by the model as

T
mo 0'2(7A'2) ~ mo 0'2(7A'2)

T=N - M - (14)

my 0'4(7A'4) my 0'4(7A'4)

with appropriate estimators 7; and a correctly chosen weight matrix M ,then T
represents distance between data and the model employed and will be asymp-
totically distributed according to the chi-square distribution with df= 3 de-
grees of freedom. See Section 5 for some details. We can thus evaluate a fit of
Model 1 using the statistic 7. The same argument holds for Model 2, and we
can confirm that Models 1 and 2 are not equivalent to each other in general,
that is, the independence assumption between explanatory and disturbance
variables is better fitted to one model than the other.

4 Finding a causal ordering (causal orders) between more than two
variables based on ICA

In this section, we propose a new method of finding causal orders that gener-
alizes our previous work, reviewed in the preceding section, to more than two
variables.



4.1 Definition of a causal ordering

We say that observed variables x; have a causal ordering if they can be ordered
so that each variable is a function of the preceding variables plus an indepen-
dent disturbance variable ;. Let us denote this ordering by i(1),...,i(n).

In other words, we say that random variables, x1, s, -, x,, have a causal
ordering, ;1) — T2 — -+ — Ti@), if nonzero coefficients By m) (Jj =
1,2,---,n,k < j) exist so that the equations:

Tit) = Y Bt Tick) + i) (15)

k<j

hold where ;) is a disturbance variable and is independently distributed from
Ty and from &, for all k < j.

4.2 Definition of data model

Our definition of causality in (15) can also be interpreted as a data model. In
the following, we actually assume that the data follows such a model so that
the causal ordering is possible to find. Thus, we assume the following data
model:

i) = Y biggace) Tick) + &ig)- (16)

k<j

We also assume that the disturbance variables ;) are nonnormal, and mu-
tually independent. This implies that &;) is independent from &) for all
k<.

To investigate the causal structure of the x;, we would like to find the correct
ordering i(j). Thus, the problem is finding the permutation of the observed
variables that reflects the causal structure of the data. In what follows, we will
show how such an ordering can be identified.

4.8  FEstimation of model

Let us normalize the equation (16) so that the disturbance variables §; have
unit norm. Denoting



Wigj)iky = —big) i)/ var(&iy) for k # j, (18)

the equation (16) can be expressed as:

Wi)a()TiG) = D Witk Tick) + &) (19)
k<j

where ;) are the disturbance variables standardized to have unit variance.

Let us denote by x the vector where the observed variables are ordered ac-
cording to i(j). In matrix form, equation (16) can be expressed as

&=Bi+¢ (20)
where the matrix B is lower triangular. Using W, this becomes

diag(W)x = —offdiag(W)x + € orequivalently Wz =& (21)

where W is still lower triangular, for the correct permutation of the observed
variables. This corresponds to the correct permutation of the columns of W.
From the theory of ICA, we know that this W can be estimated up to a
permutation of its rows, using standard ICA methods.

Now we can use the following theorem:

Theorem 1 If W is lower triangular and all the elements w;; are nonzero for
1 > 7, no other permutation of rows and columns is lower triangular

Proof First, note that any joint permutation of rows and columns can be
performed by first permuting the rows and then the columns. This is because
the permutations of rows or columns can be expressed by left and right multi-
plication by permutation matrices, respectively, and any product of multiple
permutations therefore reduces to a multiplication by two permutation matri-
ces, one from the right and one from the left, and either of the multiplications
can be done first. Assume a permutation of rows has been done, and denote
this new matrix by WT. Assume that the first row in W1 is not the same as the
first row in W. Then, at least two elements on the first row of W1 are nonzero.
Now, any permutation of columns cannot change the number of nonzero ele-
ments on the first row. Thus, a combination of row and column permutation
that is lower-triangular must be such that the first row of the row-permuted



matrix W1 is equal to the first row of W. Also, the column-permutation can-
not move the first column in order to preserve lower-triangularity. Thus, we
have proven that the first row must remain the first row, and the first column
must remain the first column. The same proof can be applied on every row
and column in succession, which proves the theorem.

Therefore, if the b;(;) i) are not zeros, the permutation to make

W = Var(&)"V%(I, — B) (22)

to lower triangular is unique. The I,, denotes an n-dimensional identity matrix.
Then the causal ordering between z; is uniquely determined taking the b;;y i)
as the ﬂz(]),z(k) in (15)

We propose a simple algorithm for finding the optimal permutations in W.

(1) Find the m(m — 1)/2-th least element in the absolute values of W and
denote the value by c.

(2) Sort the rows of W in ascending order of the number of elements whose
absolute values are greater than c.

(3) Sort the columns of W in descending order of the number of elements
whose absolute values are greater than c.

The validity of our algorithm can be proven as follows. Assume W is a
row/column permuted version of a lower-triangular matrix. Then, we have
¢ = 0. Since any permutation of the columns cannot change the number of
non-zero elements in each row, then the number of elements whose absolute
values are greater than c in the i-th row will be equal to the index of the row
in the original lower-triangular matrix. Thus, step (2) will find the correct
permutation of rows. Likewise, step (3) will find the correct permutation of
columns.

If we have correctly permuted W, the disturbance standard deviation /var (&)

can be estimated by 1/wj(ji(;) from (17). ® Then we obtain the estimate of
B by

A

B = I, — diag(W)~'Ww. (23)
Thus, the model (20) can be estimated by

(1) estimating an initial W by ICA,

> ICA has the sign ambiguity. The estimated w;; could have a negative sign. Then
we multiply the i-th row vector 'wiT by —1 so that w;; has a positive sign.

10



(2) finding a combination of permutations of the rows and the columns of
W so that W becomes as close to lower triangular as possible, using the
algorithm above,

(3) estimating B by I,, — diag(W) 'V .

The W denotes a correctly permuted version of W. It should be noted that the
correct causal ordering is given by the permutation of the rows found by our
method. The correct permutation of columns and the value of B are additional
information that are not always necessary.

4.4 FErample

Now we shall show the models 1 and 2 can be expressed in this framework. In
Model 1, the causal order of observed variables is (i(1),4(2)) = (2,1). Model
1 can be rewritten as:

T —Ob T
Model 1: | = [P T 4 | (24)
T2 00 D) S
T 00 T
o 2| _ 2 . S (25)
1 _512 0_ x1 51

~ i) 00
T = , B= . (26)
X1 612 0

One can see that the B is lower triangular when the observed variables are
ordered according to i(j). Also in Model 2, one can see the lower triangularity
of B in the same manner.

4.5 Alternative approach

Above, we said that the causal ordering between observed variables is uniquely
determined if all the b;;) i) are not zeros, which is a necessary but not the
sufficient condition. There is another possibility where the causal ordering is
unique. Let A be the inverse of W. Note that A is also lower triangular. The
a;j/a;; represents the total effect of z; to x;, whereas the b;; the direct effect of

11



xj to x; (see, Bollen, 1989, for total effect and direct effect). Then the model
(20) can be rewritten as

&= AE, (27)

which is the ICA model in (3) and the A is estimable up to a permutation of its
columns, using standard ICA methods. We can find the optimal permutations
in A in the same manner as finding those in W. Now, the causal ordering
between z; is uniquely determined if a;(j) %) are not zeros (Theorem 1).

Taking a;(j),ik)/@ik),ik) @S Bij)ie) in (15), the link between the lower trian-
gularity of A and the causal ordering can be seen as follows. For the lower
triangular mixing matrix, ;1) is essentially equal to &), up to a multiplica-
tive constant, a;(1)1). On the other hand, x;¢) is a function of f:a) and 5;*(2),
ai(g)’i(l)é-:(l) + ai(g)’i(g)é-:@). Thus, ;) is a function of ;) and a new indepen-
dent variable, &), that is, (@i2),i1)/ @i(1),i1))Ti(1) + @i(2),i(2)§}(2)- This indicates
that ;1) may cause ;2), but x;2) cannot cause z;). Continuing the same
logic, we see that x;1) can cause ;) and ;o) can cause ;3), but ;) cannot
cause either ;) or x;9) because x;(3) is simply a function of x;;) and ;). In
general, x;(;) is a function of x;),- -, z;;—1) and f;*(j), which establishes the
direction of possible causality.

The two methods: i) W-based method; ii) A-based method compensate each
other. For example, let us assume that

Ti(1) 0 0 0] |z &)
Ti2) | = | b1 0 0 i) | T &) | > (28)
Ti(3) 0 b3 0| |23 &i(3)

where by; and b3y are not zeros. The b3y is zero and the causal ordering may
not be unique if the W-based method is applied. However, let us rewrite (28)
as

1 1/2
Ti1) 100 0 00 Var(&)) 0 0
Ty | = [ [010] = |by 00 0 Var(&;(2)) 0
Ti3) 001 0 b3 0 0 0 Var(&(3))
Var (&) /2 0 0 )
=1 buVar(§m)'?  Var(&e)'? 0 &)
| 532521\/31”(&(1))1/2 532\/&1“(&(2))1/2 Val"(@'(:a))l/Q ff(g)

12
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&

*

i)

*

61(3)

(29)



Then the causal ordering can be recovered by the A-based method.

Another simple example is:

Ti(1) 0 00 Ti) fz’(l)
Ti2)y | = [ b1 0 O | @) | T | &) | > (30)
Ti(3) b3t b32 0| | 4(3) &i3)

where bop, b3y, b32 are not zeros and bs; + bsaboy is zero, for example, by =
0.3,b31 = 0.6, b3 = —0.2. Then all the direct effect of x;) to (), bigj).i) (kK <
J), are not zeros and the causal ordering can be recovered by the WW-based
method. However, the A-based method fails to recover the causal ordering
because the total effect of x;1) to x;(3), b1 + baabai, is zero:

(1) Var (&))" 0 0 &)
Ti) | = bor Var (&1 ) /? Var(&z)"/? 0 &)
Ti(3) (b1 + basbar ) Var(&1)) /2 (= 0) bayVar(&iz))'/? Var(&is))'/? &is)
Thus both W-based and A-based methods are useful for finding a causal order-
ing between observed variables. In the latter part of this article, we report the

simulation experiment and real example on the W-based method for saving
space.

5 Examination of independence

In our setting, the independence assumption between explanatory and distur-
bance variables is crucial. We propose a test statistic to examine the indepen-
dence assumption statistically.

Let N be a sample size and define V' as

V = lim N x Var[mj, mj|". (31)

—0Q

Letting T be a vector that contains the model parameters and m, and my be
the vectorized second- and fourth-order moments after removing the redun-
dant elements and o2(7) = E(ms), o4(7) = E(my), the test statistic T" to
examine the model assumption is defined as

13



T—N mo _ 0-2(7-) M ms . 0-2(7-) 7 (32>
my o4(T) my o4(T)
with
M=V =V V)T TV (33)
where
) T T
j o Oloa(r)" ou(T)] ‘ (34)

T .
or T—1

The statistic 7" approximates to a chi-square variate with degrees tr[V M| of
freedom where N is large enough (e.g., Shimizu and Kano, 2003a). The re-
quired assumption for this is that 7 is a v/ N-consistent estimator. No asymp-
totic normality is needed. See Browne (1984) for details.

6 Simulation experiment

We conducted a small simulation experiment to study the performance of
the method described above. The simulation consisted of 100 causal ordering
recovery trials. In each trial, we generated twenty-dimensional random vari-
ables é " of sample size N = 50000 as standardized disturbance variables where
their components are independently distributed according to the ¢ distribution
with parameters yielding kurtoses from 6 to 2. The disturbance variables were
standardized to have zero mean and unit variance. A random lower-triangular
matrix B where the element b;; (i > j) was distributed according to the uni-
form distribution U(0.2,1) and multiplied by —1 with probability 50% was
created. A random diagonal matrix D was created in the same manner. Then
a random mixing matrix A = (Iy — B)D was computed.

The standardized disturbance variables were linearly mixed by A after both
rows and columns were permuted randomly.

We employed FastICA® as an ICA method and took logcosh(u) as G(u) in
(6), where the symmetric orthogonalization was applied (Hyvérinen, 1999;
Hyvéarinen and Oja, 1997).

6 The MATLAB package is available at http://www.cis.hut.fi/projects /ica /fastica/.

14



The W-based method developed above was then applied on the data. The
performance of our method was evaluated as follows. We computed how many
diagonal elements in the matrix WA had an absolute value that was larger
than 0.99, which provided a measure of how many causal orders had been
recovered. Though in the ideal case where WA is a signed identity matrix,
in practice, some errors occurs in the estimation of the W. Thus we took the
value 0.99 as the threshold. The error in the estimation of the B was assessed
using the root mean square error:

Vul(B - B)(B - B)]/n. (35)

The W-based method recovered 100% of the causal orders. The root mean
square error (35) was 0.02.

7 Real data example

Questionnaire data about computer literacy learning were analyzed as an ex-
ample to illustrate the effectiveness of our method described here. The survey
was conducted at Osaka University in 2002 (c.f., Torii, 2004) to study com-
puter anxiety. The sample size was 272. Observed variables were standardized
so that all the variables have zero mean and unit variance.

We explored a causal ordering between x;, x5 and x3 using the W-based
method proposed in Section 4. We employed FastICA, where log cosh(u) is
taken as G(u) in (6) and the symmetric orthogonalization was applied. The
labels of the observed variables x1, o and x3 are shown in Table 1.

Table 1
Variable labels

x1: Subjective evaluation on your proficiency at the beginning of the class

T9: Subjective evaluation on your operation anxiety
x3: Subjective evaluation on your technology anxiety,

or negative belief toward the computer

The estimated W by FastICA was

0.99 —0.01 —0.10 | | a1 &
0.61 121 —049| |zo| = |& |, (36)
—0.31 —=0.27 —0.91 | | x5 &



and the permuted W so that it becomes as lower triangular as possible was

0.99 —0.10 —0.01 | |z, 3
—0.31 —0.91 =027 | |z5| = | & |, (37)
0.61 —0.49 1.21 | 2o &

where the second and the third rows and the second and the third columns were
permuted, respectively. The independence assumption between standardized
disturbance variables, &, &5, &5 was not rejected (7' in (32) was 4.72 with p
value of 0.86), which implies that no unobserved confounding variables existed.
The result implies the causal ordering, x; — x3 — o, that is, proficiency at
the beginning of the class — technology anxiety — operation anxiety, which
would be reasonable to the computer anxiety theory in computer literacy
learning.

8 Discussion

We developed a new statistical method for discovering a possible causal or-
dering using nonnormality of observed variables. Whereas there are some ap-
proaches on causal analysis such as SEM, our approach based on ICA is totally
different from them. SEM cannot find the direction of causality in many cases
without much background knowledge because the normal assumption on SEM
limits its applicability. We provided a partial solution to the problem utilizing
nonnormality of observed variables.

There are some drawbacks of our model. When the distribution is close to the
normal distribution, our method is unstable. Linearity assumption is rather
restrictive. The complete recursiveness assumption is also restrictive.

Researchers should and can make further confirmatory causal inferences in-
cluding experimental and longitudinal studies based on the result of our ex-
ploratory causal inference method. The method developed here would be help-
ful to construct a good initial model.
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