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Abstract

In blind source separation methods, the sources are typically assumed to be independent.
Some methods are also able to separate dependent sources by estimating or assuming a
parametric model for their dependencies. Here, we propose a method that separates depen-
dent sources without a parametric model of their dependency structure. This is possible by
introducing some general assumptions on the structure of the dependencies: the sources are
dependent only through their variances (general activity levels), and the variances of the
sources have temporal correlations. The method can be called double-blind because of this
additional blind aspect: We do not need to estimate (or assume) a parametric model of the
dependencies, which is in stark contrast to most previous methods.
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1 Introduction

Blind source separation is typically based on the assumption that the observed sig-
nals are linear superpositions of underlying hidden source signals. Let us denote
the n source signals by s1

�
t ����������� sn

�
t � , and the observed signals by x1

�
t �	��������� xm

�
t � .

Let ai j denote the coefficients in the linear mixing between the source s j
�
t � and the

observed signal xi
�
t � . Further, let us collect the source signals in a vector s

�
t ��
�

s1
�
t �	��������� sn

�
t ��� T , and similarly we construct the observed signal vector x

�
t � . Now

�
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the mixing can be expressed as the equation

x
�
t � 
 As

�
t ��� (1)

where the matrix A 
 �
ai j � collects the mixing coefficients. No particular assump-

tions on the mixing coefficients are made. Some weak structural assumptions are
often made, however: for example, it is typically assumed that the mixing matrix is
square, that is, the number of source signals equals the number of observed signals
(n 
 m), which we will assume here as well.

The problem of blind source separation is now to estimate both the source signals
si
�
t � and the mixing matrix A, based on observations of the xi

�
t � alone [16]. The

word “blind” refers primarily to the impossibility of directly observing the source
signals. If the source signals could be partly observed (during some limited teaching
period, for example), the problem could be solved by basic linear regression tech-
niques. However, more sophisticated unsupervised methods are needed here; they
are based on somewhat unconventional statistical properties of the source signals
as will be discussed next.

In most methods, the source signals are assumed statistically independent. Then,
the model can be estimated if the source signals fulfill some additional assump-
tions, two of which are commonly used. First, if all the components (except perhaps
one) have nongaussian distributions, the ensuing model is called independent com-
ponent analysis [4], and many techniques are available for estimation of the model
[14]. Second, if the components have nonstationary, smoothly changing variances
[17,19,10], the model can be estimated as well. (See Discussion for further possi-
bilities.)

Recently, several researchers have considered the case where the source signals are
not independent. Many different variants can be considered: the components might
be divided into groups so that components inside a group are dependent but com-
ponents in different groups are independent [3,11], the dependencies might follow
topographic organization [12], the structure of trees [1], or some general paramet-
ric forms [8,21]. The dependencies either need to be exactly known beforehand, or
they can be estimated as part of the method as in [1,8,21]. Each model extends the
blind source separation ability to situations in which the source signals follow the
prescribed parametric dependency structure (an exception being [11] where actual
separation is not possible).

What we propose in this paper is a method that separates dependent sources without
a parametric model of their dependency structure. The main assumptions are that
the sources are dependent only through their variances (general activity levels),
and that the variances of the sources have temporal correlation; this is what we call
spatiotemporal variance dependencies. The method can be called double-blind in
the sense that we neither observe the source signals, nor need estimate (or postulate)
a parametric model of their dependencies. Certainly, assumptions on the general
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structure of the dependencies must be made — just as in the basic case of ICA,
where the sources must be assumed nongaussian and independent.

First, we motivate and define the general kind of dependencies allowed for the
source signals (Section 2). Then we propose a cumulant-based criterion, and prove
that it separates the signals (Section 3). Section 4 shows simulation results, and
Section 5 discusses connections to other methods and concludes the paper.

2 Model with spatiotemporal variance dependencies

2.1 Motivation

Many signals have a smoothly changing, nonstationary variance [17]. For example,
if a signal is characterized by long periods of silence interspersed with bursts of
activity, one can consider the signal as having a variance signal that is (close to)
zero most of the time, the bursts corresponding to nonzero values. Such a behaviour
is clearly seen in speech signals [17] and natural video signals [9], for example.

In models of nonstationary variance, it is conventional to model a source signal si
�
t �

as a product of an underlying i.i.d. signal yi
�
t � and a smoothly changing variance

signal vi
�
t � [19]. Thus, we define

si
�
t � 
 vi

�
t � yi

�
t �	� (2)

On the other hand, the variances vi
�
t � are often dependent among different signals,

as has been observed in natural images [23] and magnetoencephalographic data
[22,12], for example. This leads to a specific form of dependencies, and could be
modelled by considering that the variance signals themselves are the results of a
mixing process [12,21].

Thus, combination of these two properties leads to what can be called spatiotempo-
ral variance dependencies. Previously, we pointed out that such dependencies exist
in natural image sequences [8,13]. A simple artificial example of signals with such
dependencies is shown in Fig. 1.

2.2 Definition of model

Based on the above motivations, we define the following signal model. The ob-
served signals are linear mixtures of source signals as in Eq. (1) with a square
mixing matrix. As usual, we assumed that the signals si

�
t � have zero mean and unit
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Fig. 1. A caricature of two signals that spatiotemporal variance dependencies. The vari-
ances, i.e. activity levels of the signals have temporal correlations, and also correlations
between signals.

variance. Further, we assume that the sources si � t � have dependencies because the
general activity levels, i.e. variances of the sources are not independent. Moreover,
we assume that these activity levels change smoothly in time. To model such de-
pendencies, we assume that each source signal can be represented as a product of
two random signals vi � t � and yi � t � as in Eq. (2). Thus, we obtain for each observed
signal xi � i � 1 ����� n:

xi � t ���
n

∑
j � 1

ai jv j � t � y j � t ��� (3)

Here, yi � t � is an i.i.d. signal that is completely independent in time, and different
yi’s are mutually independent over the index i as well. No assumption on the dis-
tribution of yi � t � is made, other than it must have zero mean. The signals yi � t � are
also independent of the signals vi � t � .

The dependencies, both between the sources and over time, are thus only due to the
dependencies between (and in) the vi � t � , which are nonnegative signals giving the
general activity levels. Thus, vi � t � and v j � t � are allowed to be statistically depen-
dent. No particular assumptions on these dependencies are made, in order to have
as blind a method as possible. (But a condition of full rank is necessary as will be
seen below.)

Our method uses the time structure of the signals, so the source signals are as-
sumed to have some time dependencies, i.e. the signals vi � t � must have some kind
of autocorrelations. An exact condition will be given in the next section.
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3 A contrast function for the model

In this section, we propose a simple cumulant-based objective function whose max-
imization is shown to enable the estimation of the model.

We assume that the data is preprocessed by temporal and spatial whitening. First,
each of the observed signals xi

�
t � is temporally filtered 1 by a filter that makes xi

�
t �

and xi
�
t � � uncorrelated for any t

�
 t � . Then, ordinary spatial whitening, which is a
standard preprocessing technique in ICA [14], is applied. The preprocessed signals
are denoted by zi

�
t � .

The contrast function is given by the following Theorem, proven in Appendix A:

Theorem 1 Assume that the signals xi
�
t � are generated as described in Eq. (3), and

that the signals are preprocessed by spatial whitening to give the multidimensional
signal z

�
t � . Define the objective function:

J
�
W � 
 ∑

i � j
�
cov

� �
wT

i z
�
t � � 2 � �

wT
j z

�
t � ∆t � � 2 ��� 2

(4)

where W 
 �
w1 ��� ��� � wn � T is constrained to be orthogonal, and the lag ∆t is non-

zero. Assume that the matrix K defined as

Ki j 
 cov
�
s2

i
�
t �	� s2

j
�
t � ∆t ��� (5)

has full rank. Then, the objective function J is (globally) maximized when WA
equals a signed permutation matrix, i.e. the wT

i z
�
t � equal the original sources si

�
t �

up to random signs.

This is a generalization of methods separating independent sources using fourth-
order cumulants. Consider the case where the sources are independent, and the
sum in the definition of J is taken only for i 
 j. Then we have a sum of the form
∑i cum

�
wT

i z
�
t �	� wT

i z
�
t �	� wT

i z
�
t � ∆t �	� wT

i z
�
t � ∆t � � . (For temporally white data this

cumulant is equal to the covariance cov
� �

wT
j z

�
t � � 2 � �

wT
i z

�
t � ∆t � � 2 � , see [10].) In the

case where the lag ∆t is taken zero, these cumulants are the kurtoses, and we see
the connection to maximization of the squares (or, possibly, the absolute values)
of kurtoses [4]. In the case of lagged cumulants (i.e. ∆t

�
 0 as in our Theorem),
it was proven in [10] that maximization of the square (or absolute value) of such

1 Strictly speaking, the data should be temporally uncorrelated if it is generated according
to the model defined here, so this temporal filtering should not be needed. However, since
the model is necessarily only an approximation, it is useful to transform the data so that
the approximation becomes better. Thus, temporal decorrelation is a useful practical proce-
dure that is not necessary in the theoretical analysis, and is therefore not mentioned in the
Theorem.
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a cumulant leads to separation of one independent source, if it has a smoothly
changing, nonstationary variance.

Likewise, the condition of full rank of K can be viewed as an extension of the
classic condition of nonzero kurtosis [4,5], or, in general, the condition of nonzero
fourth-order lagged cumulants [10]. In the case of independent sources, K is diag-
onal with the fourth-order cumulants cum

�
si
�
t �	� si

�
t ��� si

�
t � ∆t �	� si

�
t � ∆t � in its di-

agonal. Then, the assumption of full rank boils down to assuming that these lagged
cumulants are non-zero, which reflects the assumption that the sources have time-
dependencies due to smoothly changing variance variables vi

�
t � . If the dependen-

cies between the sources are weak enough that K is strictly diagonally dominant,
K is of full rank as well [7]. However, the condition of full rank does not require,
in general, that the dependencies are weak. They can be very strong, as strong off-
diagonal elements have little to do with a matrix being singular.

In fact, the condition of full rank is violated, for example, if all the signals vi � v j are
equal to each other for any i � j, and the yi have identical distributions (all the entries
in the matrix K are then equal). So, one intuitive consequence of the condition is
that the variance signals vi must have different time courses. They can have identical
distributions over time, but they must not have identical time courses. For example,
bursts of activity should be slightly delayed with respect to each other.

Strictly speaking, the variances vi
�
t � need not have autocorrelations, i.e. change

smoothly in time. The matrix K can have full rank even if its diagonal is zero,
which corresponds to the case where these autocorrelations are zero. However, the
condition then requires that the signals vi

�
t � have nonzero crosscorrelations with

time lag ∆t, and it is difficult to imagine a real situation where the signals have
nonzero crosscorrelations but zero autocorrelations.

Maximization of the contrast function can be performed by gradient ascent, where
the new separating matrix is projected on the set of orthogonal matrices [14]; the
gradient can also be first projected on the tangent space [6], which was done in the
simulations below. Further improvements might be obtained by using a line search
method as in [9], or conjugate gradients. A sketch of a Matlab implementation of
an algorithm is given in Appendix B. In the typical case where the number of data
points is much larger than the dimension of the data, the computational complexity
of computing the gradient can be easily seen to be twice as large as in basic ICA.
Yet, the actual computational complexity depends also on the number of iterations
neeeded, and comparing them is difficult.

Generalization of the method to several time lags is straightforward. Denote by J∆t

the objective function for the lag ∆t. We can simply take the sum of the objective
functions for several time lags ∆t

�
1 �	��������� ∆t

�
k � , and maximize the sum ∑k

i � 1 J∆t
�
i � .
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4 Simulations

We performed simulations in an attempt to confirm the theoretical results above.
The simulations consisted of 100 source separation trials with three different meth-
ods: 1) the double-blind method proposed in this paper, 2) FastICA using kurto-
sis [15], and 3) the method based on nonstationary variance proposed in [10] and
closely related to those one in [19,17]. The methods in points 2) and 3) are the clos-
est to the double-blind method in the set of blind source separation methods based
on independence.

In each trial, we created five random signals of length 10,000 time points. First,
we created the variance signals with the following method. Five time signals were
created using a multivariate gaussian first-order autoregressive model. The matrix
defining the AR(1) model was generated randomly in each trial, with gaussian co-
efficients. Outliers, defined as values larger than a threshold of 3 times the standard
deviation, were eliminated from the resulting signals by reducing their values to
the above-mentioned threshold (see below for a discussion of nonrobustness). The
variance signals vi were then defined as the absolute values of these signals. This
gave variance signals that had strong correlations both over time and with each
other, but no really large values that could lead to annoying outliers in the source
signals. This latter point is important because cumulant-based methods are quite
vulnerable to outliers.

Next, the source signals si were created by multiplying the variance signals by i.i.d.
(white) zero-mean subgaussian random processes yi, as in Eq. (2). The signals yi

had to be strongly subgaussian (here, signed fourth root of zero-mean uniform vari-
ables) because otherwise this construction does not create enough dependencies,
and estimation is too easy for any method. The source signals were normalized
to unit variance; they had zero mean by construction. Finally, a random mixing
matrix A was created, and the signals were mixed to give the observed signals
xi � i 
 1 ������� � 5.

The three methods were then applied on the data. The performance of each method
was assessed as follows. Denoting by W the obtained estimate of the inverse of
the mixing matrix (with permutation and sign indeterminacies), we looked at the
matrix WA. We computed how many elements in this matrix had an absolute value
that was larger than 0 � 99. This gave a measure of how many source signals had
been separated. First of all, it must be noted that the matrix WA is rather exactly
orthogonal (up to insignificant errors occurred in the estimation of the whitening
matrix), so there can be no more than 5 such elements in the matrix, and no row or
column can contain more than one such element. In the ideal case where WA is a
signed permutation matrix, there would be exactly five such elements. Thus, this is
a valid measure of the number of source signals separated.
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Fig. 2. Percentage of separated components by two conventional independence-based
blind source separation methods (FastICA using kurtosis [15] and the nonstation-
ary-variance-based algorithm in [10]), and our double-blind method.

The results are shown in Figure 2. Our method separated 97.4% of the compo-
nents, whereas the other two methods separated less than 20% of the components.
Thus, while not being perfect, our method was quite good, while the conventional
independence-based methods performed miserably.

5 Discussion

Instead of using higher-order statistics, some methods separate signals by using the
temporal second-order correlations [20,18,2]. It is sometimes claimed that these
methods separate signals without assuming independence, only uncorrelatedness.
It must be noted, however, that these methods also need to assume that the signals
have different spectral characteristics, that is, different autocorrelation structures.
Thus, the second-order methods have a considerably more limited domain of ap-
plication, since in many practical cases, one wants to separate signals which have
almost exactly the same characteristics.

Our double-blind method is clearly a very rudimentary one, and better methods
should be developed. First, the method is very sensitive to outliers due to the use
of fourth-order cumulants; more robust methods are needed in many applications.
Second, it would be interesting to relax the assumption of temporal correlation, so
that no temporal structure of signals is needed.

To conclude, we have proposed a framework for separating source signals that are
dependent through their variances, corresponding to general activity levels. We as-
sumed that the source signals have the same kind of temporal dependencies as well,
that is, they have nonstationary smoothly changing variances. This made it possi-
ble to propose a cumulant-based contrast function that was shown to separate the
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signals without necessitating estimation of a model of the source dependencies.

A Proof of theorem

Now we prove the Theorem announced above. Denote qT
i 
 wT

i A. Then wT
i z

�
t � 


qT
i s

�
t � . Consider the cumulant

k̃i j 
 cum
�
qT

i s
�
t �	� qT

i s
�
t �	� qT

j s
�
t � ∆t �	� qT

j s
�
t � ∆t ��� (A.1)

Due to temporal uncorrelatedness, this equals [10] the squared covariance used in
the Theorem:

k̃i j 
 cov
� �

qT
i s

�
t � � 2 � �

qT
j s

�
t � ∆t � � 2 � (A.2)

By the basic properties of cumulants [14] we have

k̃i j 
 ∑
klmn

qikqilq jmq jncum
�
sk
�
t �	� sl

�
t �	� sm

�
t � ∆t ��� sn

�
t � ∆t ��� (A.3)

Now, the essential point is that all the cumulants of the form
cum

�
sk
�
t �	� sl

�
t �	� sm

�
t � ∆t �	� sn

�
t � ∆t ��� are zero unless k 
 l and m 
 n. This is be-

cause of the relation si
�
t � 
 vi

�
t � yi

�
t � , where yi

�
t � is independent from any yi

�
τ �	� τ �


t and from any y j
�
t �	� j

�
 i, as well as from any v j
�
t � . Consider, for example, the

case where we have the constraints k 
 m and l 
 n instead. Then, by the well-
known formula for the fourth-order cross-cumulant of zero-mean variables [14],
we have

cum
�
sk
�
t �	� sl

�
t �	� sk

�
t � ∆t �	� sl

�
t � ∆t ���


 E � vk
�
t � vl

�
t � vk

�
t � ∆t � vl

�
t � ∆t ��� E � yk

�
t � yl

�
t � yk

�
t � ∆t � yl

�
t � ∆t ���

� E � vk
�
t � vl

�
t ��� E � vk

�
t � ∆t � vl

�
t � ∆t ��� E � yk

�
t � yl

�
t ��� E � yk

�
t � ∆t � yl

�
t � ∆t ���

� E � vk
�
t � vk

�
t � ∆t ��� E � vl

�
t � vl

�
t � ∆t ��� E � yk

�
t � yk

�
t � ∆t ��� E � yl

�
t � yl

�
t � ∆t ���

� E � vk
�
t � vl

�
t � ∆t ��� E � vk

�
t � vl

�
t � ∆t ��� E � yk

�
t � yl

�
t � ∆t ��� E � yk

�
t � yl

�
t � ∆t ���

(A.4)

Now, the random variables yk
�
t �	� yl

�
t �	� yk

�
t � ∆t �	� yl

�
t � ∆t � are mutually indepen-

dent and zero-mean. Every term in the above cumulant has the expectation of a
product which contains exactly one occurrence of either two or four of these ran-
dom variables. The expectation of such a product is thus zero.

All other cases of the equalities between indices can be shown to give zero cumu-
lants in the same way. The only exception is the case k 
 l, m 
 n, because then we
have repetition of the two terms yk

�
t � and ym

�
t � ∆t � , and thus the expectation of a

square, which is not zero. Note that this is true only for a non-zero lag ∆t; this is
why we must assume that the data has a temporal structure.
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Thus, we have

k̃i j 
 ∑
kl

q2
ikq2

jlcum
�
sk
�
t ��� sk

�
t ��� sl

�
t � ∆t �	� sl

�
t � ∆t ���


 ∑
kl

q2
ikq2

jlcov
�
s2

k
�
t �	� s2

l
�
t � ∆t ��� (A.5)

Denote by Q 
 WA the matrix with qT
i as rows, and by Q̄ the matrix obtained by

raising each element of Q to the power of two. Then, the matrix K̃ with elements
k̃i j can be expressed as

K̃ 
 Q̄KQ̄T (A.6)

which shows the remarkable phenomenon that the four-dimensional cumulant ten-
sor is reduced to a simple two-dimensional matrix. This is partly due to our assump-
tions on the dependency structure, and partly due to the choice of the particular
cumulants.

The objective function in the Theorem is the square of the Frobenius norm of K̃, i.e.
the sum of squares of the elements. Now, we need the following lemma, reminiscent
of Lemma 15 in [4]:

Lemma 1 Consider a matrix Q̄ that is doubly stochastic, i.e. the sums of rows
and the sums of columns are all equal to one. Take any square matrix of the same
dimensions M that has full rank. Then for the Frobenius norm it holds:

�
Q̄M

� 2 � �
M

� 2 (A.7)

with equality if and only if Q̄ is a permutation matrix.

Proof of Lemma: According to a theorem by Birkhoff [7, p. 527], we can represent
a doubly stochastic matrix as a finite convex sum of permutation matrices:

Q̄ 
 ∑
s

αsPs (A.8)

with αs � 0 and ∑s αs 
 1. The converse also holds. The set of doubly stochastic
matrices is thus a compact convex set with extreme points Ps. On the other hand, the
square of the Frobenius norm

�
Q̄M

� 2 is a strictly convex function of Q̄ (because�
Q̄

� 2 is trivially strictly convex, and a non-singular linear transformation does not
change convexity). Thus, the maxima are obtained at the extreme points, i.e. when
Q̄ is a permutation matrix, which proves the lemma.

Now, Q̄ in (A.6) is doubly stochastic since it consists of the squares of an orthogonal
matrix, and K is assumed to have full rank. Applying the Lemma twice, we see
that the (square of the) Frobenius norm of K̃ is maximized exactly when Q̄ is a
permutation matrix. This means that Q 
 WA is a signed permutation matrix, and
the sources have been separated. Thus, the theorem is proven.
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B Algorithm for maximizing the objective function

Here we show how to code one step of an iterative algorithm for the maximixation
of the objective function in the Theorem, in Matlab code.

Denote by T the number of time points. Denote by Z a n �
�
T � 2 � matrix that con-

tains each z
�
t �	� t 
 2 ����� T � 1 as a column (the index begins with 2 to accomodate

the lagged version below). Denote by Zplus a matrix that contains the lagged data,
i.e. z

�
t �	� t 
 1 ����� T � 2, if the lag ∆t is equal to 1, and likewise for Zminus that con-

tains the “anti-lagged” data z
�
t �	� t 
 3 ����� T . If the lag is different from 1, only the

definitions of Zplus and Zminus need to be changed. The basic code is as follows:

%compute estimates of sources with lags
Y=W*Z;
Yplus=W*Zplus;
Yminus=W*Zminus;

%compute cumulant matrix
K=(Y.ˆ2)*(Yminus’.ˆ2)/T-mean(Y’.ˆ2)’*mean(Yminus’.ˆ2);

%compute gradient
KKtsum=diag(sum(K+K’));
grad=(Y.*(K*(Yminus.ˆ2)+K’*(Yplus.ˆ2)))*Z’/T-KKtsum*W;

%compute projection of gradient to the tangent plane
%of constraint surface (optional)
ortgrad=grad-W*grad’*W;

%do gradient step with some stepsize
%(could also use grad directly but this is better)
W=W+stepsize*ortgrad;

%project back to the constaint surface, i.e. orthogonalize
W=inv(sqrtm(W*W’))*W;
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